Open Access
MATEC Web Conf.
Volume 355, 2022
2021 International Conference on Physics, Computing and Mathematical (ICPCM2021)
Article Number 03034
Number of page(s) 8
Section Computing Methods and Computer Application
Published online 12 January 2022
  1. Zhou Xuqiang. Discussion on the fault diagnosis technology of gas turbine[J]. Chemical Enterprise Management, 2019(16):180-181. [Google Scholar]
  2. Yi Wei, Mao Li, Sun Jun, Wu Linhai. Research on Classification of Improved Smote Algorithm on Imbalanced Datasets[J]. Computer and Modernization, 2018(03):83-88. [Google Scholar]
  3. Li Zhongzhi, Yin Hang, Zuo Jiankai, Liu Hedan. Bearing Fault Diagnosis Based on Generative Adversarial Network on Imbalanced Data[J]. Journal of Chinese Computer Systems, 2021, 42(01):46-51. [Google Scholar]
  4. Tapkan P, zbakir L, Kulluk S, et al. A cost-sensitive classification algorithm: BEE-Miner[J]. Knowledge-Based Systems, 2016, 95: 99-113. [CrossRef] [Google Scholar]
  5. Zughrat A, Mahfouf M, Yang Y Y, et al. Support vector machines for class imbalance rail data classification with bootstrapping-based over-sampling and under-sampling[J].IFAC Proceedings Vol-umes, 2014, 47(3):8756-8761. [Google Scholar]
  6. BLAGUS R, LUSAL. SMOTE for high-dimensional class-imbalanced data[J]. BMC Bioinformatics, 2013, 14(1):106. [CrossRef] [Google Scholar]
  7. HA J, LEE J S. A new under-sampling method using genetic algorithm for imbalanced data classification[C]. IMCOM ‘16: Proceedings of the 10th International Conference on Ubiquitous Information Management and Communication. NY, United States: Association for Computing Machinery, 2016: 1-6. [Google Scholar]
  8. RAYHAN F, AHMED S, MAHBUB A, et al. CUSBoost: cluster-based under-sampling with boosting for imbalanced classification[C]. 2017 2nd International Conference on Computational Systems and Information Technology for Sustainable Solution (CSITSS). Bangalore, India: IEEE, 2017:1-5. [Google Scholar]
  9. Cui Xin, Xu Hua, Zhu Liang. Multi-classification ensemble algorithm for imbalanced data [J/OL]. Computer Engineering and Applications:1-10[2021-0413] [Google Scholar]
  10. He H, Bai Y, Garcia E A, et al. ADASYN: Adaptive synthetic sampling approach for imbalanced learning[C]. Proceedings of the International Joint Conference on Neural Networks,2008,3:1322-1328. [Google Scholar]
  11. Lin Yu, Huang Xun, Chun Weide, Huang Dengshi. An early warning study of extreme financial risk based on ODR-ADASYN-SVM[J]. Journal of Management Sciences in China, 2016,19(05):87-101. [Google Scholar]
  12. Duan Huajuan, Wei Yongqing, Liu Peiyu. An improved multi-decision tree algorithm for imbalanced classification[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020,38(2):72-80. [Google Scholar]
  13. Tomek I. Two Modifications of CNN. IEEE Transactions on Systems Man and Communications SMC-6(11), 1976:769-772. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.