Open Access
MATEC Web Conf.
Volume 355, 2022
2021 International Conference on Physics, Computing and Mathematical (ICPCM2021)
Article Number 02054
Number of page(s) 6
Section Mathematical Science and Application
Published online 12 January 2022
  1. Li H, Deng L, Yang C, et al. Enhanced YOLOv3 Tiny Network for Real-Time Ship Detection From Visual Image[J]. IEEE Access, 2021, 9: 16692–16706. [CrossRef] [Google Scholar]
  2. Wang X, Liu J. Tomato Anomalies Detection in Greenhouse Scenarios Based on YOLO-Dense[J]. Frontiers in Plant Science, 2021, 12: 533. [Google Scholar]
  3. Laroca R, Zanlorensi L A, Gonçalves G R, et al. An efficient and layout- independent automatic license plate recognition system based on the YOLO detector [J]. IET Intelligent Transport Systems, 2021, 15(4): 483–503. [CrossRef] [Google Scholar]
  4. Knausgård K M, Wiklund A, Sørdalen T K, et al. Temperate fish detection and classification: A deep learning based approach[J]. Applied Intelligence, 2021: 1–14. [Google Scholar]
  5. Han B G, Lee J G, Lim K T, et al. Design of a Scalable and Fast YOLO for Edge-Computing Devices[J]. Sensors, 2020, 20(23): 6779. [CrossRef] [Google Scholar]
  6. Gao J, Chen Y, Wei Y, et al. Detection of Specific Building in Remote Sensing Images Using a Novel YOLO-S-CIOU Model. Case: Gas Station Identification[J]. Sensors, 2021, 21(4): 1375. [CrossRef] [Google Scholar]
  7. Sun Z, Huang L, Jia R. Coal and Gangue Separating Robot System Based on Computer Vision[J]. Sensors, 2021, 21(4): 1349. [CrossRef] [Google Scholar]
  8. Hu X, Liu Y, Zhao Z, et al. Real-time detection of uneaten feed pellets in underwater images for aquaculture using an improved YOLO-V4 network[J]. Computers and Electronics in Agriculture, 2021, 185: 106135. [CrossRef] [Google Scholar]
  9. Yan B, Fan P, Lei X, Liu Z, Yang F. A Real-Time Apple Targets Detection Method for Picking Robot Based on Improved YOLOv5. Remote Sensing. 2021; 13(9):1619. [CrossRef] [Google Scholar]
  10. Schmidhuber J (2015) Deep learning in neural networks: anoverview. Neur Netw 61:85–117 [CrossRef] [Google Scholar]
  11. White D, Svellingen C, Strachan N (2006) Automated measure-ment of species and length of fish by computer vision. Fish Res80(2-3):203–210 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.