Open Access
Issue |
MATEC Web Conf.
Volume 346, 2021
International Conference on Modern Trends in Manufacturing Technologies and Equipment (ICMTMTE 2021)
|
|
---|---|---|
Article Number | 03104 | |
Number of page(s) | 10 | |
Section | Mechanical Engineering | |
DOI | https://doi.org/10.1051/matecconf/202134603104 | |
Published online | 26 October 2021 |
- I.I. Melamed. The traveling salesman problem. Exact methods / I.I. Melamed, S.I. Sergeev, I.Kh. Sigal // Avtomat. and telemech. - 1989. - No. 10. - pp. 3–29 [Google Scholar]
- Yu.L. Kostyuk. Effective implementation of the algorithm for solving the traveling salesman problem by the branch-and-bound method. PDM, 2013, No. 2 (20), pp. 78–90 [Google Scholar]
- V.V. Vasilchikov. On optimization and parallelization of Little’s algorithm for solving the traveling salesman problem. Model. and analysis of inf. systems, 23: 4 (2016), pp. 401–411 [Google Scholar]
- A.G. Chentsov. Extremal problems of routing and distribution of tasks: theory questions / A.G. Chentsov. M; Izhevsk: Computer Research Institute. 2008. 240 p. [Google Scholar]
- A.N. Sesekin. Problems of routing movements / A.N. Sesekin, A.A. Chentsov, A.G. Chentsov. SPb.: Lan, 2011. 256 p. [Google Scholar]
- A.N. Sesekin, A.E. Sholokhov. Heuristic algorithms in the problems of routing movements. Information technologies and systems [Electronic resource]: Fourth Intern. Scientific. Conf., Bannoe, Russia, 25 Feb. - March 1, 2015 (ITiS - 2015), pp. 31–32. [Google Scholar]
- S.A. Kantsedal, M.V. Kostikova. Dynamic programming for the traveling salesman problem // ACS and automation devices. 2014. No. 166. pp. 15–20. [Google Scholar]
- V. Goloveshkin, G. Zhukova, M. Ulyanov, M. Fomichev. Estimation of distribution parameters of the complexity logarithm of the traveling salesman problem. International scientific journal ‘Modern information technologies and IT education’, Vol. 13 No. 1 (2017), pp. 19–24. [Google Scholar]
- I.I. Melamed. The traveling salesman problem. Approximate algorithms / I.I. Melamed, S.I. Sergeev, I.Kh. Sigal // Avtomat. and telemech. - 1989. - No. 11. - pp. 3–26 [Google Scholar]
- R.T. Murzakaev, V.S. Shilov, A.V. Burylov. Application of metaheuristic algorithms to minimize the length of the no-load cutting tool // Bulletin of PNRPU. Electrical engineering, information technology, control systems. 2015. No. 14. pp. 123–133 [Google Scholar]
- T.M. Tovstik, E.V Zhukova. Algorithm for the approximate solution of the traveling salesman problem // Vestnik SPbGU. Series 1. Mathematics. Mechanics. Astronomy. 2013. No. 1. pp.101-109 [Google Scholar]
- S.S. Semenov, A.V. Pedan, V.S. Volovikov, I.S. Klimov. Analysis of complexity of various algorithmic approaches for solving the traveling salesman problem // Control systems, communications and security. 2017. No. 1. pp. 116–131. URL: http://sccs.intelgr.com/archive/2017-01/08-Semenov.pdf [Google Scholar]
- Haider A. Abdulkarim, Ibrahim F. Alshammari. Comparison of algorithms for solving traveling salesman problem. International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-4 Issue-6, August 2015. pp. 76–78. [Google Scholar]
- Yu. Kochetov, N. Mladenovich, P. Hansen. Local search with alternating neighborhoods. Discrete Analysis and Operations Research. Series 2. 2003. Volume 10, No. 1. pp.11–43. [Google Scholar]
- S. Lin, B.W. Kernighan. An efficient heuristic algorithm for the traveling salesman problem // Oper. Res. 1973. V. 21, No. 2. pp. 498–516. [CrossRef] [Google Scholar]
- Yu.A. Kochetov. Computational capabilities of local search in combinatorial optimization, Journal of computational mathematics and physics - 2008 - V. 48, No. 5 - pp. 788–807. [Google Scholar]
- N.D. Starostin, K.V. Mironov. Algorithm modification of the level-by-level approximation to the minimum route, 2017 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Bilbao, Spain, 2017, pp. 270–275. [CrossRef] [Google Scholar]
- N.D. Starostin, K.V. Mironov. Strategies of the level-by-level approach to the minimal route, Advances in Science, Technology and Engineering Systems Journal. (ASTESJ), 2019, pp. 268–281. [CrossRef] [Google Scholar]
- B.L. Golden, C.C. Skiscim. Using simulated annealing to solve routing and location problems // Nav. Res. Log. Quart. 1986. V. 33. No. 2. pp. 261–279 [CrossRef] [Google Scholar]
- N.D. Starostin. Search for the shortest path. Accelerated optimization of tool movements - Saarbrucken: Lap Lambert Akademic Publishing, 2015. - 89 p. [Google Scholar]
- N.D. Starostin. Variants of calculating the minimum processing route // Information technologies and systems [Electronic resource]: Fifth Intern. Scientific. Conf., Bannoe, Russia, 24 Feb. - February 28, 2016 pp. 42–48 [Google Scholar]
- MP-TESTDATA - The TSPLIB Symmetric traveling salesman problem instances – URL: http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp . (access date: 18.12.2019) [Google Scholar]
- N.D. Starostin. Basic variation of the level-by-level approximation algorithm to the minimum route [Electronic resource]: Sixth Int. Scientific. Conf., Bannoe, Russia, March 1 - 5, 2017 pp. 295–302 [Google Scholar]
- N.D. Starostin, D.V. Kurennov. Level-by-level approach to the minimum route // International Scientific and Technical Conference ‘Prom-Engineering’, St. Petersburg, May 16-19, 2017 [Google Scholar]
- VLSI TSP Collection – URL: http://www.math.uwaterloo.ca/tsp/vlsi/index.html (access date: 31.08.2020) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.