Open Access
Issue
MATEC Web Conf.
Volume 346, 2021
International Conference on Modern Trends in Manufacturing Technologies and Equipment (ICMTMTE 2021)
Article Number 03002
Number of page(s) 8
Section Mechanical Engineering
DOI https://doi.org/10.1051/matecconf/202134603002
Published online 26 October 2021
  1. A. Meleshko, V. Desnitsky, I. Kotenko, Machine learning based approach to detection of anomalous data from sensors in cyber-physical water supply systems, IOP Conf. Series: Materials Science and Engineering. IOP Publishing, v. 709, n. 033034, pp. 1-7, doi: 10.1088/1757-899X/709/3/033034 (2019) [Google Scholar]
  2. O. Avci, O. Abdeljaber, S. Kiranyaz, M, Hussein, D.J. Inman, Wireless and real-time structural damage detection: A novel decentralized method for wireless sensor networks, Journal of Sound and Vibration, v. 424, pp. 158–172, doi:10.1016/j.jsv.2018.03.008 (2018) [Google Scholar]
  3. S. Rajasegarar, C. Leckie, M. Palaniswami, J. C. Bezdek, Distributed Anomaly Detection in Wireless Sensor Networks, 10th IEEE Singapore International Conference on Communication Systems, pp. 1-5, doi: 10.1109/ICCS.2006.301508 (2006) [Google Scholar]
  4. T. Luo, S. G. Nagarajan, Distributed Anomaly Detection Using Autoencoder Neural Networks in WSN for IoT, 2018 IEEE International Conference on Communications (ICC), pp. 1-6, doi: 10.1109/ICC.2018.8422402 (2018) [Google Scholar]
  5. A.R. Silva, H.T. Martins, P.S. Rocha, A.F. Loureiro, B. Ruiz, H.C. Wong, Decentralized intrusion detection in wireless sensor networks, Proceedings of the 1st ACM international workshop on Quality of service & security in wireless and mobile networks (Q2SWinet ‘05), pp. 16–23. dio: https://doi.org/10.1145/1089761.1089765 (2005) [Google Scholar]
  6. K. Huang, K. Yuen, Online dual‐rate decentralized structural identification for wireless sensor networks, Structural Control and Health Monitoring, pp 1-18, doi:10.1002/stc.2453 (2019) [Google Scholar]
  7. M. Safaei, A.S. Ismail, H. Chizari, M. Driss, W. Boulila, S. Asadi, M. Safaei, Standalone noise and anomaly detection in wireless sensor networks: A novel time-series and adaptive Bayesian-network-based approach, Software: Practice and Experience, pp. 1-19, doi:10.1002/spe.2785 (2020) [Google Scholar]
  8. E. Kohno, T. Ohta, Y. Kakuda, Secure decentralized data transfer against node capture attacks for wireless sensor networks, International Symposium on Autonomous Decentralized Systems, pp. 1-6, doi: 10.1109/ISADS.2009.5207366 (2009) [Google Scholar]
  9. V. Desnitsky, A. Chechulin, I. Kotenko, D. Levshun, M. Kolomeec, Combined Design Technique for Secure Embedded Devices Exemplified by a Perimeter Protection System, SPIIRAS Proceedings, v. 48, pp.5-31, doi: 10.15622/sp.48.1 (2016) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.