Open Access
MATEC Web Conf.
Volume 343, 2021
10th International Conference on Manufacturing Science and Education – MSE 2021
Article Number 02005
Number of page(s) 8
Section Management, Modelling and Monitoring of Manufacturing Processes
Published online 04 August 2021
  1. R. Chandrappa, D. B. Das, Waste from Electrical and Electronic Equipment, 197–216 (2012) [Google Scholar]
  2. EUROPEAN PARLIAMENT; THE COUNCIL OF THE EUROPEAN UNION, Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment, Official Journal of the European Union (2003) [Google Scholar]
  3. T. R. Bieler, T. K. Lee, Lead-Free Solder, Reference Module in Materials Science and Materials Engineering (2017) [Google Scholar]
  4. K. Suganuma, Curr. Opin. Solid State Mater. Sci., 5, 55–64 (2001) [CrossRef] [Google Scholar]
  5. H. Ma, J. C. Suhling, J. Mater. Sci., 44, 1141–1158 (2009) [Google Scholar]
  6. R. W. Johnson, J. L. Evans, P. Jacobsen, J. R. R. Thompson, M. Christopher, IEEE Trans. Electron. Packag. Manuf., 27, 164–176 (2004) [Google Scholar]
  7. I.E. Anderson, J Mater Sci: Mater Electron, 18, 55–76 (2007) [Google Scholar]
  8. K. Seshan, Reliability Issues, Handbook of Thin Film Deposition, Elsevier, 43–62 (2018) [Google Scholar]
  9. H. Zhang, F. Che, T. Lin, W. Zhao, Stress and reliability analysis for interconnects, Modeling, Analysis, Design, and Tests for Electronics Packaging beyond Moore, Elsevier, 131–244 (2020) [Google Scholar]
  10. T. C. Lui, B. N. Muthuraman, THERMINIC 2016, Reliability assessment of wafer level chip scale package (WLCSP) based on distance-to-neutral point (DNP), (Budapest, Hungary, 2016) [Google Scholar]
  11. J. H. Lau, Solder. Surf. Mt. Technol., 9 (2), 58–60 (1997) [Google Scholar]
  12. W. Dauksher, W. S. Burton, Microelectron. Reliab., 43 (12), 2011–2020 (2003) [Google Scholar]
  13. X. Li, Z. Wang, J. Mater. Process. Technol., 183 (1), 6–12 (2007) [Google Scholar]
  14. K. C. Norris, A. H. Landzberg, IBM J. Res. Dev., 13 (3), 266–271 (1969) [Google Scholar]
  15. A. Zubelewicz, R. Berriche, L. M. Keer, M. E. Fine, Am. Soc. Mech. Eng., 111, 179–182 (1988) [Google Scholar]
  16. J. Clech, SMTA International 2016, The Combined Effect of Assembly Pitch and Distance to Neutral Point on Solder Joint Thermal Cycling Life, (Rosemont, USA, 2016) [Google Scholar]
  17. J. H. L. Pang, B. S. Xiong, T. H. Low, Thin Solid Films, 462–463 (SPEC. ISS.), 408–412 (2004) [Google Scholar]
  18. A. Syed, ECTC 2004, Accumulated creep strain and energy density based thermal fatigue life prediction models for SnAgCu solder joints, (Las Vegas, USA, 2004) [Google Scholar]
  19. V. Ramachandran, K. C. Wu, K. N. Chiang, J. Mech., 34 (5), 637–643 (2018) [Google Scholar]
  20. S. S. Manson, Thermal Stress and low-cycle fatigue (1966) [Google Scholar]
  21. J. Morrow, Cyclic Plastic Strain Energy and Fatigue of Metals, Internal Friction, Damping, and Cyclic Plasticity, ASTM International, 45–87 (1965) [Google Scholar]
  22. F. C. Monkman, N. J. Grant, American society of testing materials, Proceedings, 56, 593–620 (1956) [Google Scholar]
  23. R. Darveaux, K. Banerji, A. Mawer, G. Dody, J. Lau, Reliability of plastic ball grid array assembly, Ball grid array technology, 13, 379–442 (1995) [Google Scholar]
  24. F. X. Che, EPTC 2016, Study on board level solder joint reliability for extreme large fan-out WLP under temperature cycling (Singapore, 2016) [Google Scholar]
  25. Z. Chen et al., EPTC 2018, Solder Joint Reliability Simulation of Fan-out Wafer Level Package (FOWLP) Considering Viscoelastic Material Properties (Singapore, 2018) [Google Scholar]
  26. I. Guven, V. Kradinov, J. L. Tor, E. Madenci, J. Electron. Packag. Trans. ASME, 126 (3), 398–405 (2004) [Google Scholar]
  27. W. Lin, Q. Pham, B. Baloglu, M. Johnson, ECTC 2017, SACQ Solder Board Level Reliability Evaluation and Life Prediction Model for Wafer Level Packages (Orlando, USA, 2017) [Google Scholar]
  28. F. X. Che, J. H. L. Pang, EPTC 2004, Thermal fatigue reliability analysis for PBGA with Sn-3.8Ag-0.7Cu solder joints (Singapore, 2004) [Google Scholar]
  29. U. Rahangdale et al., ITHERM2017, Mechanical characterization of RCC and FR4 laminated PCBs and assessment of their board level reliability, (Orlando, USA, 2017) [Google Scholar]
  30. N. S. Gokhale, S. Deshpande, S. Bedekar, A. Thite, Practical finite element analysis (Finite to infinite, Maharashtra, 2008) [Google Scholar]
  31. Texas Instruments Incorporated, MicroStar BGA, Packaging Reference Guide (2000) [Google Scholar]
  32. T. C. Lui, IWIPP2017, Lifetime prediction of viscoplastic lead-free solder: A new solder material, SACQ (Delft, Netherlands, 2017) [Google Scholar]
  33. S. Ahmed, M. Basit, J. C. Suhling, P. Lall, ASME 2015 IEPTCE, Characterization of Doped SAC Solder Materials and Determination of Anand Parameters (San Francisco, USA, 2015) [Google Scholar]
  34. M. Basit, M. Motalab, J. C. Suhling, P. Lall, ASME 2015 IEPTCE, Viscoplastic Constitutive Model for Lead-Free Solder Including Effects of Silver Content, Solidification Profile, and Severe Aging (San Francisco, USA, 2015) [Google Scholar]
  35. L. Anand, J. Eng. Mater. Technol., 104 (1), 12 (1982) [Google Scholar]
  36. K. Seelig, D. Suraski, [Online] Available: [Accessed 20 April 2021] [Google Scholar]
  37. X. Wei, S. Su, S. Hamasha, H. Ali, J. Suhling, P. Lall, ITHERM 2020, Fatigue Performance of Doped SAC Solder Joints in BGA Assembly (Orlando, USA, 2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.