Open Access
Issue
MATEC Web Conf.
Volume 342, 2021
9th edition of the International Multidisciplinary Symposium “UNIVERSITARIA SIMPRO 2021”: Quality and Innovation in Education, Research and Industry – the Success Triangle for a Sustainable Economic, Social and Environmental Development”
Article Number 03022
Number of page(s) 10
Section Sustainable Environmental Engineering and Protection
DOI https://doi.org/10.1051/matecconf/202134203022
Published online 20 July 2021
  1. D. and D. Meadows, The Limits to Growth (Universe Book, New York, 1972) 21 [Google Scholar]
  2. M.F. Jischa, Herausforderung Zukunft; 2nd edition (Elsevier, Spektrum Publishing House, Heidelberg, 2005) [CrossRef] [Google Scholar]
  3. V. Hauff, Our Common Future. The Brundtland Report of the World Commission on Environment and Development (Oxford Univ. Press, Oxford, 1987) [Google Scholar]
  4. A. Grunwald, Technikfolgenabschätzung Eine Einführung (Edition Sigma, Berlin, 2002) [Google Scholar]
  5. M.S. Mousa, I. Tulbure, Physicsand technology-based approaches for human sustainability. ECOTERRA Journal of Environmental Research and Protection, Bistrita, 17, 1, 13-23 (2020) [Google Scholar]
  6. I. Tulbure, Integrative Modellierung zur Beschreibung von Transformationsprozessen (VDI, Düsseldorf, 2003). [Google Scholar]
  7. G. Banse, R. Janikowski, A. Kiepas (Eds.), Nachhaltige Entwicklung transnational. Sichten und Erfahrungen aus Mitteleuropa (Edition Sigma, Berlin, 2011) [CrossRef] [Google Scholar]
  8. European University Institute, The EU Clean Energy Package, Fiesole, Italy (2018) [Google Scholar]
  9. I. Tulbure, Zustandsbeschreibung und Dynamik umweltrelevanter Systeme, (Papierflieger, Clausthal-Zellerfeld, Germany, 1997) [Google Scholar]
  10. R. Armon, O. Hänninen (Eds.), Environmental Indicators (Springer, Netherlands, 2015) [CrossRef] [Google Scholar]
  11. I. Tulbure, B. Ludwig, Umweltindikatoren – Schlüssel zu Sustainable Development, Umwelt, Springer VDI, 4-5, 45-49 (2000) [Google Scholar]
  12. Eurostat, Environmental pressure indicators for the EU, European Commission, Luxembourg.\ (2001) [Google Scholar]
  13. A. Goldoni, R. Larciprete, L. Petaccia, S. Lizzit, Single-Wall Carbon Nanotube Interaction with Gases: Sample Contaminants and Environmental Monitoring. J. Am. Chem. Soc., 125, 11329−11333 (2003) [CrossRef] [Google Scholar]
  14. T. Gupta, S.P. Singh, P. Rajput, A.K. Agarwal (Eds.), Measurement, Analysis and Remediation of Environmental Pollutants (Springer, Singapore, 2020). [CrossRef] [Google Scholar]
  15. M.S. Mousa, Comparison between single-walled CNT, Multi-walled CNT, and carbon nanotubefiber pyrograph III. IOP Conf. Ser.: Materials Science & Engineering, 305, 012025, Doi: 10.1088/1757-899X/305/1/012025 (2018) [CrossRef] [Google Scholar]
  16. Q. Cao, J. Rogers, Ultrathin Films of Single-Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects. Adv. Mater., 21, 29−53 (2009) [CrossRef] [Google Scholar]
  17. J. Kong, R.N. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, R. N. Franklin, C. Zhou, M.G. Chapline, Nanotube Molecular Wires as Chemical Sensors. 287, 622−625 (Science 2000) [CrossRef] [PubMed] [Google Scholar]
  18. D.R. Kauffman, A. Star, Carbon Nanotube Gas and Vapor Sensors. Angew. Chem., 47, 6550−6570 (Int. Ed. 2008) [CrossRef] [Google Scholar]
  19. M. Meyyappan, Carbon Nanotube-Based Chemical Sensors. 12, 2118−2129 (2016) [Google Scholar]
  20. F. Rigoni, S. Tognolini, P. Borghetti, G. Drera, S. Pagliara, A. Goldoni, L. Sangaletti, Enhancing the Sensitivity of Chemiresistor Gas Sensors Based on Pristine Carbon Nanotubes to Detect Low-Ppb Ammonia Concentrations in the Environment. 138, 7392−7399 (2013) [Google Scholar]
  21. E. Llobet, Gas Sensors Using Carbon Nanomaterials: A Review. Sens. Actuators, B, 179, 32−45 (2013) [Google Scholar]
  22. R.M. Penner, A Nose for Hydrogen Gas: Fast, Sensitive H2Sensors Using Electrodeposited Nanomaterials. Acc. Chem. Res., 50, 1902−1910 (2017) [Google Scholar]
  23. J. Kong, M.G. Chapline, H. Dai, Functionalized Carbon Nanotubes for Molecular Hydrogen Sensors. Adv. Mater., 13, 1384−1386 (2001) [Google Scholar]
  24. M.T. Humayun, R. Divan, L. Stan, A. Gupta, D. Rosenmann, L. Gundel, P.A. Solomon, I. Paprotny, ZnO Functionalization of Multiwalled Carbon Nanotubes for Methane Sensing at Single Parts per Million Concentration Levels. J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., 33, 06FF01 (2015) [Google Scholar]
  25. M.T. Humayun, R. Divan, Y. Liu, L. Gundel, P.A. Solomon, I. Paprotny, Novel Chemoresistive CH4 Sensor with 10 Ppm Sensitivity Based on Multiwalled Carbon Nanotubes Functionalized with SnO2 Nanocrystals. J. Vac. Sci. Technol., A, 34, 01A131 (2016) [Google Scholar]
  26. M. Ding, D.C. Sorescu, G.P. Kotchey, A. Star, Welding of Gold Nanoparticles on Graphitic Templates for Chemical Sensing. J. Am. Chem. Soc., 134, 3472−3479 (2012) [Google Scholar]
  27. N. Duc Hoa, N. Van Quy, Y. Suk Cho, D. Kim, Nanocomposite of SWNTs and SnO2 Fabricated by Soldering Process for Ammonia Gas Sensor Application. Phys. Status Solidi, A, 204, 1820−1824 (2007) [Google Scholar]
  28. B. Ghaddab, J.B. Sanchez, C Mavon, C.M. Paillet, R. Parret, A.A. Zahab, J. Bantignies, V. Flaud, E. Beche, F. Berger, Detection of O3 and NH3 Using Hybrid Tin Dioxide/Carbon Nanotubes Sensors: Influence of Materials and Processing on Sensor’s Sensitivity. Sens. Actuators, B, 170, 67−74 (2012) [Google Scholar]
  29. E. Bekyarova, I. Kalinina, M.E. Itkis, L. Beer, N. Cabrera, R.C. Haddon, Mechanism of Ammonia Detection by Chemically Functionalized Single-Walled Carbon Nanotubes: In Situ Electrical and Optical Study of Gas Analyte Detection. J. Am. Chem. Soc., 129, 10700−10706 (2007) [Google Scholar]
  30. B. Yoon, S.F. Liu, T.M. Swager, Surface-Anchored Poly(4-Vinylpyridine)−Single-Walled Carbon Nanotube−Metal Composites for Gas Detection. Chem. Mater., 28, 5916−5924 (2016) [Google Scholar]
  31. P. Li, C.M. Martin, K.K. Yeung, W. Xue, Dielectrophoresis Aligned Single-Walled Carbon Nanotubes as PH Sensors. Biosensors, 1, 23−35 (2011) [Google Scholar]
  32. Y. Liao, C. Zhang, Y. Zhang, V. Strong, J. Tang, X.G. Li, K. Kalantar-Zadeh, E.M.V. Hoek, K. L. Wang, R.B. Kaner, Carbon Nanotube/Polyaniline Composite Nanofibers: Facile Synthesis and Chemosensors. Nano Lett., 11, 954−959 (2011) [Google Scholar]
  33. P. Gou, N.D. Kraut, I.M. Feigel, H. Bai, G.J. Morgan, Y. Chen, Y. Tang, K. Bocan, J. Stachel, L. Berger, Carbon Nanotube Chemiresistor for Wireless PH Sensing. Sci. Rep., 4, 4468 (2015) [Google Scholar]
  34. J. Morton, N. Havens, A. Mugweru, A.K. Wanekaya, Detection of Trace Heavy Metal Ions Using Carbon Nanotube Modified Electrodes. Electroanalysis, 21, 1597−1603 (2009) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.