Open Access
MATEC Web Conf.
Volume 337, 2021
PanAm-Unsat 2021: 3rd Pan-American Conference on Unsaturated Soils
Article Number 03012
Number of page(s) 8
Section Slopes, Embankments, Roads, and Foundations
Published online 26 April 2021
  1. S. K. Vanapalli & Z. N. Taylan. (2012). Design of single piles using the mechanics of unsaturated soils. Int. J. GEOMATE, 2(1), 197–204. [Google Scholar]
  2. A. Uchaipichat. (2012). Variation of pile capacity in unsaturated clay layer with suction. Electron. J. Geotech. Eng., 17, 2425–2433. [Google Scholar]
  3. S. H. Chung & S. R. Yang. (2017). Numerical analysis of small-scale model pile in unsaturated clayey soil. Int. J. Civ. Eng., 15(6), 877–886. doi:10.1007/s40999-016-0065-7 [Google Scholar]
  4. S. K. Vanapalli, M. Sheikhtaheri, W. T. Oh. (2018). Experimental and simple semiempirical methods for interpreting the axial load versus settlement behaviors of single model piles in unsaturated sands. Geotech. Test. J., 41(4), doi:10.1520/GTJ20170152698-716. [Google Scholar]
  5. N. K. Jain, G. Ranjan, G. Ramasamy. (1987). Effect of vertical load on flexural behaviour of piles. Geotech. Eng., 18(2). [Google Scholar]
  6. C. Anagnostopoulos & M. Georgiadis. (1993). Interaction of axial and lateral pile responses. J. Geotech. Eng., 119(4), 793–798. doi:10.1061/(ASCE)0733-9410(1993)119:4(793) [Google Scholar]
  7. W. Lu & G. Zhang. (2018). Influence mechanism of vertical-horizontal combined loads on the response of a single pile in sand. Soils Found., 58(5), 1228–1239. doi:10.1016/j.sandf.2018.07.002 [Google Scholar]
  8. L. Hazzar, M. N. Hussien, M. Karray. (2019). Two-dimensional modelling evaluation of laterally loaded piles based on three-dimensional analyses. Geomech. Geoengin., 1-18. doi: 10.1080/17486025. 2019.1640897 [Google Scholar]
  9. S. Karthigeyan, V. V. G. S. T. Ramakrishna, K. Rajagopal. (2006). Influence of vertical load on the lateral response of piles in sand. Comput. Geotech., 33(2), 121–131. doi:10.1016/j. compgeo.2005.12.002 [Google Scholar]
  10. S. Karthigeyan, V. V. G. S. T. Ramakrishna, K. Rajagopal. (2007). Numerical investigation of the effect of vertical load on the lateral response of piles. J. Geotech. Geoenvironmental Eng., 133(5), 512–521.doi:10.1061/(ASCE)1090-241(2007)133:5(512) [Google Scholar]
  11. G. Zheng & L. Wang. (2008). Effect of loading level and sequence of vertical and lateral load on bearing capacity of single pile. Chinese J. Geotech. Eng., 30(12):1796-1804. [Google Scholar]
  12. M. N. Hussien, T. Tobita, S. Iai, M. Karray. (2014). On the influence of vertical loads on the lateral response of pile foundation. Comput. Geotech., 55, 392–403. doi: 10.1016/j.compgeo.2013.09.022 [Google Scholar]
  13. K. Chatterjee & D. Choudhury. (2016). Analytical and numerical approaches to compute the influence of vertical load on lateral response of single pile. 15th Asian Reg. Conf. Soil Mech. Geotech. Eng. ARC 2015 New Innov. Sustain. 2(36), 1319–1322. doi: 10.3208/jgssp.IND-11 [Google Scholar]
  14. L. Hazzar, M. N. Hussien, M. Karray. (2017). Influence of vertical loads on lateral response of pile foundations in sands and clays. J. Rock Mech. Geotech. Eng., 9(2), 291–304. doi: 10.1016/j.jrmge.2016.09.002 [Google Scholar]
  15. T. E. Zormpa & E. M. Comodromos. (2018). Numerical evaluation of pile response under combined lateral and axial loading. Geotech. Geol. Eng., 36(2), 793–811. doi:10.1007/s10706-017-0354-1 [Google Scholar]
  16. R. L. Mokwa, J. M. Duncan, M. J. Helmers. (2000). Development of p-y curves for partly saturated silts and clays. In New Technological and Design Developments in Deep Foundations (pp. 224-239). doi: 10.1061/40511(288)16 [Google Scholar]
  17. S. Stacul, N. Squeglia, F. Morelli. (2017). Laterally loaded single pile response considering the influence of suction and non-linear behaviour of reinforced concrete sections. Appl. Sci., 7(12), 1310. doi: 10.3390/app7121310 [Google Scholar]
  18. L. M. Lalicata, A. Desideri, F. Casini, L. Thorel. (2019). Experimental observation on laterally loaded pile in unsaturated silty soil. Can. Geotech. J., 56(11), 1545–1556. doi:10.1139/cgj-2018-0322 [Google Scholar]
  19. D. G. Fredlund, N. R. Morgenstern, R. A. Widger. (1978). The shear strength of unsaturated soils. Can. Geotech. J., 15(3), 313–321. doi:10.1139/t78-029 [Google Scholar]
  20. V. Escario, J. F. T. Juca, M. S. Coppe. (1989). Strength and deformation of partly saturated soils. Proc. 12th Intern. Conf. on Soil Mechanics and Foundation Engineering, Rio de Janeiro. 12 (pp. 43-46). doi:10.1016/0148-9062(90)91084-k [Google Scholar]
  21. S. K. Vanapalli, D. G. Fredlund, D. E. Pufahl, A. W. Clifton. (1996). Model for the prediction of shear strength with respect to soil suction. Can. Geotech. J., 33(3), 379–392. doi: 10.1139/t96-060 [Google Scholar]
  22. D. W. Rassam & F. Cook. (2002). Predicting the shear strength envelope of unsaturated soils. Geotech. Test. J., 25(2), 215–220. doi: 10.1520/gtj11365j [Google Scholar]
  23. O. M. Vilar. (2006). A simplified procedure to estimate the shear strength envelope of unsaturated soils. Can. Geotech. J., 43(10), 1088–1095. doi:10.1139/T06-055 [Google Scholar]
  24. G. S. Guan, H. Rahardjo, L. E. Choon. (2010). Shear strength equations for unsaturated soil under drying and wetting. J. Geotech. Geoenvironmental Eng., 136(4), 594–606. doi:10.1061/(asce)gt.1943-5606.0000261 [Google Scholar]
  25. S. K. Vanapalli. (2009). Shear strength of unsaturated soils and its applications in geotechnical engineering practice. Keynote Address. Proc. 4th Asia-Pacific Conf. on Unsaturated Soils. New Castle, Australia (pp. 579-598). [Google Scholar]
  26. E. A. Garven & S. K. Vanapalli. (2006). Evaluation of empirical procedures for predicting the shear strength of unsaturated soils. Proc. 4th Intern. Conf. on Unsaturated Soils, Carefree, Arizona, American Society of Civil Engineers Geotechnical Special Publication, 147(2):2570–2581. doi: 10.1061/40802(189)219 [Google Scholar]
  27. W. T. Oh & S. K. Vanapalli. (2011). Modelling the applied vertical stress and settlement relationship of shallow foundations in saturated and unsaturated sands. Can. Geotech. J., 48(3), 425–438. doi: 10.1139/T10-079 [Google Scholar]
  28. S. K. Vanapalli & F. M. Mohamed. (2007). Bearing capacity of model footings in unsaturated soils. In Exp. Unsaturated Soil Mech. (pp. 483-493). Springer, Berlin, Heidelberg. doi: 10.1007/3-540-69873-6_48 [Google Scholar]
  29. W. T. Oh, S. K. Vanapalli, A. J. Puppala. (2009). Semi-empirical model for the prediction of modulus of elasticity for unsaturated soils. Can. Geotech. J., 46(8), 903–914. doi:10.1139/T09-030 [Google Scholar]
  30. M. Al-Khazaali, Z. Han, S. K. Vanapalli. (2016). Modelling the load-settlement behavior of model piles in unsaturated sand and glacial till. Geotech. Struct. Eng. Congr. 2016 -Proc. Jt. Geotech. Struct. Eng. Congr. 2016 (pp. 2075-2087). [Google Scholar]
  31. D. G. Fredlund & A. Xing. (1994). Equations for the soil-water characteristic curve. Can. Geotech. J., 31(4), 521–532. doi:10.1139/t94-061 [Google Scholar]
  32. R. H. Brooks & A. T. Corey. (1964). Hydraulic properties of porous media. Hydrology papers (Colorado State University); no. 3. [Google Scholar]
  33. V. Ileme & W. T. Oh. (2019). Estimating the Stand-Up Time of Unsupported Vertical Trenches in Vadose Zone. KSCE J. Civ. Eng., 23(10), 4259–4273. [Google Scholar]
  34. DS 415. (1984). The Danish code of practice for foundation engineering, Danish Society of Civil Engineering. [Google Scholar]
  35. Jaky, J. (1944). “The coefficient of earth pressure at rest. In Hungarian.” J. Soc. Hung. Eng. Arch., 355–358 [Google Scholar]
  36. K. Terzaghi. (1943). Theoretical Soil Mechanics. John Wiley & Sons, Inc. doi:10.1002/9780470172766 [Google Scholar]
  37. S. Prakash & H. D. Sharma. (1990). Pile foundations in engineering practice. John Wiley & Sons. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.