Open Access
Issue
MATEC Web Conf.
Volume 337, 2021
PanAm-Unsat 2021: 3rd Pan-American Conference on Unsaturated Soils
Article Number 01019
Number of page(s) 8
Section Fundamentals and Experimental Investigations
DOI https://doi.org/10.1051/matecconf/202133701019
Published online 26 April 2021
  1. C. Borgnakke & R. E. Sonntag (2009). Fundamentals of Thermodynamics. Translation of the 7th American edition – São Paulo: Edgard Blucher. (in Portuguese). [Google Scholar]
  2. F. Loveridge (2012). Thermal performance of foundations piles used as heat exchangers in ground energy systems. Ph.D. Thesis (Physics). University of Southampton. Faculty of Engineering and The Environment. Civil, Maritime, Environmental Engineering & Science. [Google Scholar]
  3. C. L. Prevedello (2010). Soil thermal energy (chapter V). In: Física do Solo. Viçosa, MG: Sociedade Brasileira de Ciências do Solo. (in Portuguese). [Google Scholar]
  4. H. Brandl (2006). Energy foundations and other thermo-active ground structures. Géotechnique, 56 (2), 81–122. [Google Scholar]
  5. M. E. Suryatriyastuti, H. Mroueh and S. Burlon (2012). Understanding the temperature-induced mechanical behaviour of energy pile foundations. Ren. and Sus. Ener. Rev., 16, 3344–3354. [Google Scholar]
  6. S. W. Rees, M. H. Adjali, Z. Zhou, M. Davies and H. R. Thomas (2000). Ground heat transfer effects on the thermal performance of earth-contact structures. Ren. and Sus. Ener. Rev., 4, 213–265. [Google Scholar]
  7. O. Farouki (1981). Thermal properties of soils: CRREL Monograph 81–1. Hanover, NH: United States Army Corps of Engineers, Cold Regions Research and Engineering Laboratory. [Google Scholar]
  8. M. M. Vilela (2004). Study of an experimental method to determine the potential of using geothermal energy at low depth. DSc.Thesis, Inter-unit Post Graduation Program in Energy, São Paulo University, São Paulo. (in Portuguese). [Google Scholar]
  9. Comité Français de Mécanique des Sols & Syntec-Ingénierie – CFMS & Syntec (2017). Recommandations pour la conception, le dimensionnement et la mise en oeuvre des géostructures thermiques. Revue Française de Géotechnique, 149, 120, doi: https://doi.org/ 10.1051/geotech/2017012. [Google Scholar]
  10. L. A. Bandeira Neto (2015). An experimental stufy of the thermal response of heat exchanger piles in unsaturated tropical soil. MSc. Thesis. University of São Paulo at São Carlos School of Engineering, São Carlos, Brazil. (in Portuguese). [Google Scholar]
  11. T. S. O. Morais and C. H. C. Tsuha, (2016). Energy pile and ground temperature response to heating test : a case study in Brazil. Bul. Chem. Comm., 48, 115–119. [Google Scholar]
  12. T. S. O. Morais, J. D. Sousa and C. H. C. Tsuha (2019). Measurement od thermal conductivity of unsaturated tropical soils by needle probe method. In: Proceedings XVI Panamerican Conference on Soil Mechanics and Geotechnical Engineering, Cancun, Mexico, 2379–2387. doi: 10.3233/STAL190305 [Google Scholar]
  13. T. S. O. Morais (2019). Thermal and thermomechanical behaviour of geothermal energy piles in unsaturated soils in a subtropical climate region. DSc. Thesis. University of São Paulo at São Carlos School of Engineering, São Carlos, Brazil. (in Portuguese) [Google Scholar]
  14. T. d. S. O. Morais, C. H. C. Tsuha, L. A. Bandeira Neto and R. M. Singh (2020). Effects of seasonal variations on the thermal response of energy piles in an unsaturated Brazilian tropical soil. En. and Build., 216, 109971. doi: https://doi.org/10.1016/j.enbuild.2020. 109971 [Google Scholar]
  15. H. Oh (2014). Thermal resistivity dry-out curves for thirteen sandy soils. MSc. Thesis. University of Wisconsin-Madison, United States of America. [Google Scholar]
  16. E. Di Sipio and D. Bertermann (2018). Thermal properties variations in unconsolidated material for very shallow geothermal application (ITER project)**. Int. Agroph., 32, 149–164. [Google Scholar]
  17. A. P. L. Duarte, T. M. P. de Campos, J. T. Araruna Jr. and P. Rocha Filho (2006). Thermal properties for unsaturated soils. In: Fourth Intern. Conf. on Unsat. Soils, 1707–1718, Carefree, Arizona. doi: https://doi.org/10.1061/40802(189)143 [Google Scholar]
  18. T. Lhendup, L. Aye and R. J. Fuller (2014). In-situ measurement of borehole thermal properties in Melbourne. Appl. Thermal Eng., 73, 287–295. [Google Scholar]
  19. D. Barry-Macaulay, A. Bouazza, R. M. Singh, B. Wang and P. G. Ranjith (2013). Thermal conductivity of soils and rocks from the Melbourne (Australia) region. Eng. Geo., 164, 131–138. [CrossRef] [Google Scholar]
  20. J. P. Holman (1983). Heat transfer. Translated – São Paulo: McGraw-Hill Brazil. (in Portuguese) [Google Scholar]
  21. C. G. Olgun and J. S. McCartney (2014). Outcomes from International Workshop on Thermoactive Geotechnical Systems for Near-Surface Geothermal Energy: from research to pratice. The J. of D. Found. Inst., 8, 59–73. [Google Scholar]
  22. O. M. Vilar, A. A. Bortolucci, J. E. Rodrigues (1985). Geothecnical Characteristics of Tropical Cenozoic Sediment from São Carlos Region, (Brazil). In: Proceedings of First International Conference on Geomechanics in Tropical Lateritic and Saprolitic Soils, Brasília, Brazil, p. 461–470. [Google Scholar]
  23. S. L. Machado and O. M. Vilar (2002). Geotechnical Characteristics of an Unsaturated Soil Deposit at São Carlos, Brazil. In. Proceedings of the International workshopon Characterisation and Engineering Properties of Natural Soil, Singapore. Balkema, Rotterdam, The Netherlands, 2, 1305–1321. [Google Scholar]
  24. S. L. Machado (1998). Aplications of elastoplasticity concepts to unsaturated soils. DSc.Thesis. University of São Paulo at São Carlos School of Engineering, São Carlos, Brazil. (in Portuguese) [Google Scholar]
  25. G. De Mio (2005). Geological conditioning aspects for Piezocone test interpretation for stratigraphical identification in geotechnical and geo-environmental site investigation. DSc. Thesis. University of São Paulo at São Carlos School of Engineering, São Carlos, Brazil. (in Portuguese) [Google Scholar]
  26. Clarke, B. G., Agab, A. e Nicholson, D. (2008). Model specification to determine thermal conductivity of soils. Geot. Eng., ICE, 161: 161–168. [Google Scholar]
  27. Low, J. E. (2016). Thermal Conductivity of soils for energy foundation applications. PhD Thesis, University of Southampton. [Google Scholar]
  28. B. P. Rocha (2018). Geotechnical characterization of unsaturated tropcal soil by in situ tests. DSc. Thesis. University of São Paulo, São Carlos, Brazil. (in Portuguese) [Google Scholar]
  29. J. E. Low, F. A. Loveridge, W. Powrie and D. Nicholson (2015). A comparison of laboratory and in situ methods to determine soil thermal conductivity for energy foundations and other ground heat exchanger applications. Acta geotechnica, 10 (2), 209–218. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.