Open Access
MATEC Web Conf.
Volume 337, 2021
PanAm-Unsat 2021: 3rd Pan-American Conference on Unsaturated Soils
Article Number 01010
Number of page(s) 8
Section Fundamentals and Experimental Investigations
Published online 26 April 2021
  1. A. Revil, V. Naudet, J. Nouzaret, & M. Pessel. (2003). Principles of electrography applied to self-potential electrokinetic sources and hydrogeological applications. Water Resources Research, 39(5). [CrossRef] [Google Scholar]
  2. O. Loeffler, & M. Bano, (2004). Ground penetrating radar measurements in a controlled vadose zone: Influence of the water content. Vadose Zone Journal, 3(4), 1082–1092. [Google Scholar]
  3. H. M. Jol, (Ed.). (2009). Ground penetrating radar theory and applications. Elsevier.–0–444–53348–7.X0001–4 [Google Scholar]
  4. E. Franzoni, & S. Bandini. (2012). Spontaneous electrical effects in masonry affected by capillary water rise: the role of salts. Construction and Building Materials, 35, 642–646. [Google Scholar]
  5. P. Klenk, S. Jaumann, & K. Roth. (2015). Quantitative high-resolution observations of soil water dynamics in a complicated architecture using time-lapse ground-penetrating radar. Hydrology and Earth System Sciences, 19(3), 1125. [Google Scholar]
  6. A. Revil, A. S. Ahmed, & A. Jardani. (2017). Self-potential: A non-intrusive ground water flow sensor. Journal of Environmental and Engineering Geophysics, 22(3), 235–247. [Google Scholar]
  7. X. Liu, J. Chen, X. Cui, Q. Liu, X. Cao, & X. Chen, (2017). Measurement of soil water content using ground-penetrating radar: a review of current methods. International Journal of Digital Earth, 12(1), 95–118. [Google Scholar]
  8. I. Oliveti, & E. Cardarelli. (2019). Self-Potential Data inversion for environmental and hydrogeological investigations. Pure and Applied Geophysics, 176(8), 3607–3628. [Google Scholar]
  9. M. S. Gois, A. L. B. Cavalcante. (2019). Estudo Quantitativo das Concentrações de Soluto e Níveis de Saturação de Fluidos a Partir de Estudos Hidrogeofísicos na Zona Não Saturada. Relatório Técnico Anual de Pós-Doutorado; PPG em Geotecnia, Dep. de Eng. C. e A., Universidade de Brasília (in portuguese). [Google Scholar]
  10. M. S. Gois, N. O. Guimaraes, K. R. C. B. Costa, A. L. B. Cavalcante. (2020). Prediction of hydraulic properties and capillary height of granular soils during time-lapse monitoring of capillary rise, Report No.01, Department of Civil and Environmental Engineering, University of Brasilia, Brazil. [Google Scholar]
  11. N. Fries, & M. Dreyer. (2008). An analytic solution of capillary rise restrained by gravity. Journal of colloid and interface science, 320(1), 259–263. [Google Scholar]
  12. R. Lucas. (1918). Rate of capillary ascension of liquids (Ueber das Zeitgesetz des kapillaren Aufstiegs von Flussigkeiten). Kollid-Zeitschrift. V. 23, N. 1, pp. 15–22. [Google Scholar]
  13. E. W. Washburn. (1921). The dynamics of capillary flow. Physical review, 17(3), 273. [CrossRef] [Google Scholar]
  14. B. V. Zhmud, F. Tiberg, K. Hallstensson. (2000). Dynamics of capillary rise. Journal of colloid and interface science, 228(2), 263–269. [Google Scholar]
  15. C. Jian-Chao, Y. Bo-Ming, M. Mao-Fei, & L. Liang, (2010). Capillary rise in a single tortuous capillary. Chinese Physics Letters, 27(5), 054701. [Google Scholar]
  16. W. R. Sill. (1983). Self-potential modeling from primary flows. Geophysics 48, 76–86. [Google Scholar]
  17. W. M. Telford, L. P. Geldart, & R. E. Sheriff. (1990). Applied. Geophysics (Vol. 1). Cambridge University Press. [Google Scholar]
  18. G. V. Keller, & F. C. Frischknecht. (1966). Electrical methods in geophysical prospecting. Oxford: Pergamon Press. [Google Scholar]
  19. P. H. Shah, & D. N. Singh. 2005. Generalized Archie’s law for estimation of soil electrical conductivity. J. ASTM Int. 2 (5), 1–20. [Google Scholar]
  20. N. G. Ohofugi, M. S. Gois, K. R. C. B. da Costa, A. L. B. Cavalcante. 2019. Instrumentação de Baixo Custo em Coluna de Solo para Monitoramento Time-Lapse da Ascensão Capilar. In: 5º Simpósio de Prática de Engenharia Geotécnica na Região Centro Oeste (GEOCENTRO 2019). [Google Scholar]
  21. F. Visentin, & K. Suzuki, (2015). Deformable sensors for soft robot by electrical impedance tomography. In 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 1006–1011). IEEE. [Google Scholar]
  22. L. Marescot, S. Rigobert, S. P. Lopes, R. Lagabrielle, & D. Chapellier (2006). A general approach for DC apparent resistivity evaluation on arbitrarily shaped 3D structures. Journal of Applied Geophysics, 60(1), 55–67. [Google Scholar]
  23. K. J. Sandmeier, (2014). REFLEXW Version 7.2.3, Program for the processing of seismic, acoustic or electromagnetic reflection, refraction and transmission data. [Google Scholar]
  24. G. C. Topp, J. L. Davis, & A. P. Annan. (1980). Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water resources research, 16(3), 574–582. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.