Open Access
Issue |
MATEC Web Conf.
Volume 336, 2021
2020 2nd International Conference on Computer Science Communication and Network Security (CSCNS2020)
|
|
---|---|---|
Article Number | 09032 | |
Number of page(s) | 28 | |
Section | Computer-Aided Advanced System and Management | |
DOI | https://doi.org/10.1051/matecconf/202133609032 | |
Published online | 15 February 2021 |
- I. Barukčić, Die Kausalität, 1st edn. (Wiss.-Verl., Hamburg, 1989), ISBN 3-9802216-0-1 [Google Scholar]
- I. Barukčić, Die Kausalität, 2nd edn. (Scientia, Wilhelmshaven, 1997), ISBN 3-9802216-4-4 [Google Scholar]
- I. Barukčić, Causality: New statistical methods (Books on Demand GmbH, Norderstedt, Ger¬many, 2005), ISBN 978-3-8334-3645-1 [Google Scholar]
- I. Barukčić, The Mathematical Formula of the Causal Relationship k, International Journal of Applied Physics and Mathematics 6, 45 (2016) [Google Scholar]
- I. Barukčić, Theoriae causalitatis principia mathematica (Books on Demand, Norderstedt, 2017), ISBN 978-3-7448-1593-2 [Google Scholar]
- I. Barukčić, Die Kausalität, reprint of first edition 1989. edn. (Books on Demand, Norderstedt, 2017), ISBN 978-3-7448-1595-6 [Google Scholar]
- I. Barukčić, Causal relationship k, International Journal of Mathematics Trends and Technology IJMTT 66, 76 (2020) [Google Scholar]
- I. Barukčić, O. Ufuoma, Analysis of Switching Resistive Circuits. A Method Based on the Uni-fication of Boolean and Ordinary Algebras, first edition edn. (Books on Demand, Norderstedt, 2020), ISBN 978-3-7519-8474-4 [Google Scholar]
- I. Barukčić, Zero and infinity. Mathematics without frontiers, 1st edn. (Books on Demand GmbH, Hamburg-Norderstedt, 2020), ISBN 978-3-7519-1873-2 [Google Scholar]
- I. Barukčić, Locality and Non locality, European Journal of Applied Physics 2 (2020) [Google Scholar]
- I. Barukčić, N-th index D-dimensional Einstein gravitational field equations. Geometry un¬chained., Vol. 1, 1st edn. (Books on Demand GmbH, Hamburg-Norderstedt, 2020), ISBN 978-3-7526-4490-6 [Google Scholar]
- W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Zeitschrift für Physik 43, 172 (1927) [Google Scholar]
- I. Barukčić, The Equivalence of Time and Gravitational Field, Physics Procedia 22, 56 (2011) [Google Scholar]
- I. Barukčić, Anti Heisenberg-Refutation Of Heisenberg’s Uncertainty Relation, in American In¬stitute of Physics - Conference Proceedings (Växjö, (Sweden), 2011), Vol. 1327, pp. 322-325, https://aip.scitation.org/doi/abs/10.1063/1.3567453 [Google Scholar]
- I. Barukčić, Anti Heisenberg – Refutation of Heisenberg’s Uncertainty Principle, International Journal of Applied Physics and Mathematics 4, 244 (2014) [Google Scholar]
- I. Barukčić, Anti Heisenberg—The End of Heisenberg’s Uncertainty Principle, Journal of Ap¬plied Mathematics and Physics 04, 881 (2016) [Google Scholar]
- G. Boole, The Mathematical Analysis of Logic – Being an Essay Towards a Cal-culus of Deductive Reasoning (Macmillan, Cambrdge, 1847), https://archive.org/details/mathematicalanal00booluoft, https://archive.org/details/mathematicalanal00bool [Google Scholar]
- G. Boole, An investigation of the laws of thought, on which are founded mathematical theories of logic and probabilities (New York, Dover, 1854), http://archive.org/details/bub_gb_DqwAAAAAcAAJ [Google Scholar]
- G. Kröber, Der Konditionalismus und seine Kritik in der sowjetischen Wissenschaft, Wis-senschaftliche Zeitschrift der Karl-Marx Universität Leipzig 10, 137 (1961) [Google Scholar]
- D.P.v. Hansemann, Über das konditionale Denken in der Medizin und seine Bedeutung fur die Praxis (Hirschwald, Berlin., 1912) [Google Scholar]
- M. Verworn, Kausale und konditionale Weltanschauung (Verlag von Gustav Fischer, Jena, 1912) [Google Scholar]
- G.W.F.v. Leibniz, Explication de l’arithmétique binaire, qui se sert des seuls caractères O et I avec des remarques sur son utilité et sur ce qu’elle donne le sens des anciennes figures chinoises de Fohy, Mémoires de mathématique et de physique de l’Académie royale des sciences (1703) [Google Scholar]
- I. Barukčić, The Interior Logic of Inequalities, International Journal of Mathematics Trends and Technology IJMTT 65, 146 (2019) [Google Scholar]
- I. Barukčić, Classical Logic And The Division By Zero, International Journal of Mathematics Trends and Technology IJMTT 65, 31 (2019) [Google Scholar]
- M. Born, Zur Quantenmechanik der Stoßvorgänge, Zeitschrift für Physik 37, 863 (1926) [Google Scholar]
- J.v. Uspensky, Introduction To Mathematical Probability (McGraw-Hill Company, New York (USA), 1937) [Google Scholar]
- C. Huygens, F. van Schooten, De ratiociniis in ludo alae: In: Exercitationum mathematicarum liber primus [- quintus] (ex officina Johannis Elsevirii, Lugdunum Batavorum (Leiden, The Netherlands), 1657), https://www.e-rara.ch/zut/doi/10.3931/e-rara-8813 [Google Scholar]
- W.A. Whitworth, Choice and Chance. With 1000 Exercises, fifth eidtion edn. (Deighton, Bell & Co., Cambridge, 1901), https://archive.org/details/choicechancewith00whituoft [Google Scholar]
- B. Efron, R. A. Fisher in the 21st century (Invited paper presented at the 1996 R. A. Fisher Lecture), Statistical Science 13, 95 (1998), publisher: Institute of Mathematical Statistics [Google Scholar]
- R.A. Fisher, XV.—The Correlation between Relatives on the Supposition of Mendelian Inheri¬tance., Transactions of The Royal Society of Edinburgh 52, 399 (1918), publisher: Royal Society of Edinburgh Scotland Foundation [Google Scholar]
- A.N. Kolmogorov, Foundations of the theory of probability, second english edition. translated by nathan morrison edn. (Chelsea Publishing Company, New York, 1956), ISBN 978-0-486-82159-7 [Google Scholar]
- K. Pearson, Mathematical contributions to the theory of evolution. XIII. On the theory of contin-gency and its relation to association and normal correlation, Biometric Series I (Dulau and Co., London, 1904) [Google Scholar]
- J. Bernoulli, Ars conjectandi, Opus posthumus: Accedit Tractatus de seriebus infinitis; et epistola Gallice scripta De Ludo Pilae Reticularis (Impensis Thurnisiorum [Tournes], fratrum, Basileae (Basel, Suisse), 1713) [Google Scholar]
- A.d. Moivre, The Doctrine of Chances or a Method of Calculating the Probability of Events in Play (printed by W. Pearson for the author, London, 1718) [Google Scholar]
- A. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung (Springer Berlin Heidelberg, Berlin, Heidelberg, 1933), ISBN 978-3-642-49596-0 [CrossRef] [Google Scholar]
- F. Yates, Contingency Tables Involving Small Numbers and the Chi square Test, Supplement to the Journal of the Royal Statistical Society 1, 217 (1934) [Google Scholar]
- I. Barukčić, The P Value of likely extreme events, International Journal of Current Science Re-search 5, 1841 (2019) [Google Scholar]
- F.R. Helmert, Ueber die Wahrscheinlichkeit der Potenzsummen der Beobachtungsfehler und über einige damit im Zusammenhange stehende Fragen, Zeitschrift für Mathematik und Physik 21, 102 (1876) [Google Scholar]
- K. Pearson, X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 50, 157 (1900) [Google Scholar]
- I.J. Bienaymé, Considérations a l’appui de la découverte de Laplace sur la loi de probabilité dans la méthode des moindres carrés, Comptes rendus des séances de l’Académie des Sciences des Paris 37, 309 (1853) [Google Scholar]
- P.L. Tschébychef, Des valeurs moyennes, Journal de Mathématiques Pures et Appliquées 12, 177 (1867) [Google Scholar]
- G.S. Kienle, Cum hoc, ergo propter hoc (2020) [Google Scholar]
- S. Wright, Correlation and causation, Journal of Agricultural Research 20 (1921) [Google Scholar]
- J. Pearl, Causality: models, reasoning, and inference (Cambridge University Press, Cambridge, U.K. ; New York, 2000), ISBN 978-0-521-89560-6 [Google Scholar]
- A. Bravais, Analyse mathématique sur les probabilités des erreurs de situation d’un point, Mémoires Présentées Par Divers Savants À L’Académie Royale Des Sciences De L’Institut De France 9, 255 (1846) [Google Scholar]
- F. Galton, Typical Laws of Heredity, Nature 15, 492 (1877) [Google Scholar]
- K. Pearson, VII. Mathematical contributions to the theory of evolution.—III. Regression, hered¬ity, and panmixia, Philosophical Transactions of the Royal Society of London. Series A, Con¬taining Papers of a Mathematical or Physical Character 187, 253 (1896) [Google Scholar]
- H.M. Blalock, Causal inferences in nonexperimental research, 6th edn. (Univ. of North Carolina Press, Chapel Hill, NC, 1972), ISBN 978-0-8078-0917-4 [Google Scholar]
- K. Pearson, The Grammar of Science (Adam and Charles Black, London (GB), 1911), ISBN 978-1-108-07711-8 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.