Open Access
MATEC Web Conf.
Volume 336, 2021
2020 2nd International Conference on Computer Science Communication and Network Security (CSCNS2020)
Article Number 06022
Number of page(s) 5
Section Artificial Recognition and Application
Published online 15 February 2021
  1. Yoshua Bengio, Holger Schwenk, Jean-S´ebastien Sen´ecal, Fr´ederic Morin, and Jean-Luc Gauvain. Neural Probabilistic Language Models, pages 137-186. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006 [Google Scholar]
  2. Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space. ICLR(International Conference on Learning Representations), 2013 [Google Scholar]
  3. Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In Proceedings of the 31st International Conference on International Conference on Machine Learning - Volume 32, ICML’14, pages II–1188–II–1196., 2014 [Google Scholar]
  4. Wissal Farsal, Samir Anter, and Mohammed Ramdani. Deep learning: An overview. In Proceedings of the 12th International Conference on Intelligent Systems: Theories and Applications, SITA’18, pages 38:1-38:6, New York, NY, USA, 2018. ACM. [Google Scholar]
  5. T. Young, D. Hazarika, S. Poria, and E. Cambria. Recent trends in deep learning based natural language processing [review article]. IEEE Computational Intelligence Magazine, 13(3):55-75, Aug 2018 [Google Scholar]
  6. Kyunghyun Cho, Bart van Merri¨enboer, Caglar Gulcehre, Dzmitry Bah-danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder for statistical ma-chine translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1724-1734, Doha, Qatar, October 2014. Association for Computational Linguistics. [Google Scholar]
  7. Sepp Hochreiter and J¨urgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735-1780, November 1997 [Google Scholar]
  8. Yoon Kim. Convolutional neural networks for sentence classification. CoRR, abs/1408.5882, 2014 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.