Open Access
MATEC Web Conf.
Volume 336, 2021
2020 2nd International Conference on Computer Science Communication and Network Security (CSCNS2020)
Article Number 06017
Number of page(s) 7
Section Artificial Recognition and Application
Published online 15 February 2021
  1. L. Peiyu, X. Jing, F. Shaodong, et al. Subjective sentence recognition based on Hidden Markov model. Chinese Journal of information technology, 2016, 38(4): 206-212. [Google Scholar]
  2. H. Yu, P. Da, F. Guohong. Chinese explanatory opinionated sentence recognition based on auto-encoding feature. Journal of Peking University (NATURAL SCIENCE EDITION), 2015, 51 (2): 234-240. [Google Scholar]
  3. Z. Jie, W. Run. Recognition of opinion bearing sentences in microblogs based on new words extension and feature selection. Journal of information technology, 2013,32 (9): 945-951. [Google Scholar]
  4. F. Ruiji, W. Dong, W. Shijin, et al. Elegart sentence recognition for automated essay scoring. Chinese Journal of information technology, 2018, 32 (6): 88-97. [Google Scholar]
  5. W.M. Lengzhi. Tibetan sentence boundary recognition method based on end part of speech. Qinghai Normal University, 2016 [Google Scholar]
  6. Zh. Weina, L. Huidan, Y. Xin. The Tibetan sentence boundary identification based on legal texts. National Youth computational linguistics symposium, 2010 [Google Scholar]
  7. M. Weizhen, W.M. Zhaxi, Nima zhaxi. Method of identification of Tibetan sentence boundary. Journal of Tibet University (NATURAL SCIENCE EDITION), 2012, 27 (2): 70-76. [Google Scholar]
  8. Z. Weina, Y. Xin, L. Huidan. Method of identification of Tibetan sentence boundary. Chinese Journal of information technology, 2013, 27 (1): 115-120. [Google Scholar]
  9. L. Lin, L. Congjun, J. Di. Tibetan functional chunks boundary detection. Acta Sinica Sinica, 2013, 27 (6): 165-169. [Google Scholar]
  10. C. Zangtai. Research on the automatic identification of Tibetan sentence boundaries with maximum entropy classifier. Computer engineering and science, 2012, 34(6): 187-190. [Google Scholar]
  11. L. Xiang, C. Zangtai, J. Wenbin. A maximum entropy and rules approach to identifying Tibetan sentence boundaries. Acta Sinica Sinica, 2011, 25 (4): 39-45. [Google Scholar]
  12. R. Qingji, A.J. Cairang. Research on automatic recognition method of Tibetan sentence boundary. Information and computer (theoretical Edition), 2014 (8): 62-63. [Google Scholar]
  13. Z. Xiji, L. Ba. Based on function words and sentence patterns Tibetan sentence extraction method. Journal of Northwest University for Nationalities: Natural Science Edition, 2018, 39 (04): 39-43. [Google Scholar]
  14. Q.C. Zhuoma H.Q. Cairang C.R. Dangzhi, et al. Tibetan sentence boundary recognition based on mixed strategy. Journal of Inner Mongolia Normal University: Chinese version of natural science, 2019, 48 (5): 400-405. [Google Scholar]
  15. J. Taijia. General theory of modern Tibetan grammar. Gansu Nationalities Press, 2000 [Google Scholar]
  16. J. Taijia. Tibetan syntax research. China Tibetology press, 2013 [Google Scholar]
  17. Anonymous. Introduction to Tibetan grammar. Sichuan people's publishing house, 2014 [Google Scholar]
  18. B. Mabao, C. Zhijie, L.M. Zhaxi. Tibetan interrogative sentences parsing based on PCFG. Chinese Journal of information technology, 2019, 33 (2): 67-75. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.