Open Access
Issue |
MATEC Web Conf.
Volume 336, 2021
2020 2nd International Conference on Computer Science Communication and Network Security (CSCNS2020)
|
|
---|---|---|
Article Number | 06002 | |
Number of page(s) | 8 | |
Section | Artificial Recognition and Application | |
DOI | https://doi.org/10.1051/matecconf/202133606002 | |
Published online | 15 February 2021 |
- A. Bochkovskiy, C.Y. Wang, H.Y.M. Lia. "YOLOv4: Optimal Speed and Accuracy of Object Detection." (2020).arXiv:2004.10934v1 [Google Scholar]
- R. Girshick, J. Donahue, T. Darrell, J. Malik. Rich feature hier-archies for accurate object detection and semantic seg-mentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2014: 580-587. [Google Scholar]
- S. Ren, K. He, R. Girshick, J. Sun. Faster R-CNN: To-wards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137-1149 (2017). [Google Scholar]
- J. Dai, Y. Li, K. He, Sun. J."R-fcn: Object de-tection via region-based fully convolutional networks." Advances in neural information processing systems. (2016). [Google Scholar]
- J. Ye, X. Lu, Z. Lin, J.Z. Wang. Rethinking the smaller-norm-less-informative assumption in channel pruning of convolution layers[J]. arXiv:1802.00124, (2018). [Google Scholar]
- J. Redmon,S. Divvala,R. Girshick,A. Farhadi. "You only look once: Unified, real-time object detection[J]." OALib Journal. (2016). ISSN: 2333-9721. [Google Scholar]
- W. Liu, D. Anguelov, D. Erhan, C. Szegedy, A.C. Berg. SSD: Single Shot MultiBox Detector.[C] European Conference on Computer Vision, 2016: 21-37. [Google Scholar]
- J. Redmon, A. Farhadi. "YOLOv3:an incremental improvement[J]." arXiv:1804.02767v1 (1804),(2018). [Google Scholar]
- C.Y. Wang, H.Y.M. Liao, Y.H. Wu, P.Y. Chen, I.H. Yeh. (2020). CSPNet: A New Backbone that can Enhance Learning Capability of CNN. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE. [Google Scholar]
- K. He, X. Zhang, S. Ren, and J. Sun.Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analy-sis and Machine Intelligence (TPAMI), 37(9):1904-1916,(2015). [Google Scholar]
- S. Liu, L. Qi, H. Qin, J. Shi, J. Jia. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages8759-8768, (2018). [Google Scholar]
- A, S. S., A, D. C., B, A. H., A, A. U.: Group sparse regularization for deep neural networks. Neurocomputing, 241, 81-89 (2017) arXiv preprint at https://arxiv.org/abs/1607.00485 [CrossRef] [Google Scholar]
- Glenn Jocher, guigarfr, perry0418, Ttayu, Josh Veitch-Michaelis, Gabriel Bianconi, IlyaOvodov. (2019). ultralytics/yolov3:Rectangular Inference, Conv2d + Batchnorm2d Layer Fusion (Versionv6). Zenodo. http://doi.org/10.5281/zenodo.2672652 [Google Scholar]
- Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, C. Zhang.: "Learning efficient convolutional networks through network slimming." Proceedings of the IEEE International Conference on Computer Vision (2017). https://doi.org/10.1109/ICCV.2017.298 [Google Scholar]
- A. Ben Khalifa, I. Alouani, M. Ali Mahjoub, N. Essoukri Benamara, Pedestrian Detection Using a Moving Camera: A Novel Framework For Foreground Detection, Cognitive Systems Research (2019), doi: https://doi.org/10.1016/j.cogsys.2019.12.003. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.