Open Access
Issue |
MATEC Web Conf.
Volume 336, 2021
2020 2nd International Conference on Computer Science Communication and Network Security (CSCNS2020)
|
|
---|---|---|
Article Number | 06001 | |
Number of page(s) | 8 | |
Section | Artificial Recognition and Application | |
DOI | https://doi.org/10.1051/matecconf/202133606001 | |
Published online | 15 February 2021 |
- H. Lu, Y. Li, T. Uemura, H. Kim, S. Serikama.. Low illumination underwater lightfield images reconstruction using deep convolutional neural networks, Future Gener. Comput. Syst. 82 (2018) 142-148. [Google Scholar]
- H. Lu, Y. Li, M. Chen, H. Kim, S. Serikawa.. Brain intelligence: go beyond artificial intelligence. Mobile Networks and Applications, (2017), 23(7553), 368-375. [Google Scholar]
- H. Lu, B. Li, J. Zhu, Y. Li, Serikawa.. Wound intensity correction and segmentation with convolutional neural networks, Concurr. Comput.: Pract. Exper. 29 (6) (2017). [Google Scholar]
- P. Li, D. Wang, L. Wang, H. Lu.. Deep visual tracking: review and experimental comparison, Pattern Recogn. 76 (2018) 323-338. [Google Scholar]
- C. Sun, D. Wang, H. Lu, M.H. Yang.. Learning spatial-aware regressions for visual tracking, 2018 [Google Scholar]
- C. Sun, D. Wang, H. Lu, M.H. Yang.. Correlation tracking via joint discrimination and reliability learning, 2018 [Google Scholar]
- J. Redmon, S. Divvala, R. Girshick, A. Farhadi.. "You only look once: Unified, real-time object detection." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016 [Google Scholar]
- J. Redmon, A. Farhadi..: Yolo9000: better, faster, stronger. Proceedings of the IEEE conference on computer vision and pattern recognition pp. 6517-6525 (2017) [Google Scholar]
- J. Redmon, A. Farhadi..: "YOLOv3: an incremental improvement (2018)." arXiv preprint at https://arxiv.org/abs/1804.02767(1804) [Google Scholar]
- S. Han, J. Pool, J. Tran, W.J. Dally.. Learning both weights and connections for efficient neural network. In NIPS, pages 1135-1143, 2015 [Google Scholar]
- H. Li, A. Kadav, I. Durdanovic, H. Samet, H.P. Graf.. Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710, 2016 [Google Scholar]
- Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, C. Zhang.. "Learning efficient convolutional networks through network slimming." Proceedings of the IEEE International Conference on Computer Vision (2017). https://doi.org/10.1109/ICCV.2017.298 [Google Scholar]
- K. He, X. Zhang, S. Ren, J. Sun.. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis & Machine Intelligence, 37(9), 1904-1916 (2014) [Google Scholar]
- Scardapane, Simone, Hussain, Amir, Comminiello, Danilo, Uncini, Aurelio.. Group sparse regularization for deep neural networks. Neurocomputing, 241, 81-89 (2017) arXiv preprint at https://arxiv.org/abs/1607.00485 [Google Scholar]
- Glenn Jocher, guigarfr, perry0418, Ttayu, Josh Veitch-Michaelis, Gabriel Bianconi, IlyaOvodov. (2019). ultralytics/YOLOv3:Rectangular Inference, Conv2d + Batchnorm2d Layer Fusion (Versionv6). Zenodo. http://doi.org/10.5281/zenodo.2672652 [Google Scholar]
- S. Ioffe, C. Szegedy.. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.