Open Access
Issue
MATEC Web Conf.
Volume 336, 2021
2020 2nd International Conference on Computer Science Communication and Network Security (CSCNS2020)
Article Number 02023
Number of page(s) 11
Section Industrial Design and Engineering Technology
DOI https://doi.org/10.1051/matecconf/202133602023
Published online 15 February 2021
  1. Y.S. Kil, H. Lee, S.H. Kim. Analysis of Blind Frame Recognition and Synchronization Based on Sync Word Periodicity. IEEE Access. 8,147516-147532 (2020) [Google Scholar]
  2. S. Dan, X. Xiaojian, W. Jing. A novel presence detector for burst signals based on the fluctuation of the correlation function. IEEE 10th INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS. 1628-1631(2010) [Google Scholar]
  3. H. Zhong, T. Zhang. Block-LDPC: a practical LDPC coding system design approach. Circuits and Systems I: Regular Papers, IEEE Transactions on. 52(4), 766-775 (2005) [Google Scholar]
  4. J. Wang, S. Yuan, Y. Zhou, G. Zhang. Codec Implementation of QC-LDPC Code in CCSDS Near-Earth Standard. 2020 5th International Conference on Computer and Communication Systems (ICCCS). 575-579 (2020) [Google Scholar]
  5. Y. Yu, Z. Jia, W. Tao. LDPC codes optimization for differential encoded LDPC coded systems with multiple symbol differential detection. IEEE Global Conference on Consumer Electronics. 1-2 (2016) [Google Scholar]
  6. T. Etzion, A. Trachtenberg, A.Vardy. Which codes have cycle-free Tanner graphs. IEEE Transactions on Information Theory. 45(6), 2173-2181 (1999) [Google Scholar]
  7. T.J. Richardson, R.L. Urbanke. The capacity of low-density parity-check codes under message-passing decoding. IEEE Transactions on Information Theory. 47(2), 599-618 (2001) [Google Scholar]
  8. T.J. Richardson, M.A. Shokrollahi, R.L. Urbanke. Design of capacity-approaching irregular low-density parity-check codes. IEEE Transactions on Information Theory. 47(2), 619-637 (2001) [Google Scholar]
  9. S.Y. Chung, J.D.F.Jr, T.J. Richardson. On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit. IEEE Communications Letters. 5(2), 58-60 (2001) [Google Scholar]
  10. F. Vatta, A. Soranzo, M. Comisso, G. Buttazzoni, F. Babich. New explicitly invertible approximation of the function involved in LDPC codes density evolution analysis using a Gaussian approximation. Electronics Letters. 55(22), 1183-1186 (2019) [Google Scholar]
  11. D.J.C. MacKay, S.T. Wilson, M.C. Davey. Comparison of constructions of irregular Gallager codes. IEEE Transactions on Communications. 47(10), 1449-1454 (1999) [Google Scholar]
  12. S.Y. Chung, T.J. Richardson, R.L. Urbanke. Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation. IEEE Transactions on Information Theory. 47(2), 657-670 (2001) [Google Scholar]
  13. C.L. Ho. Analysis of threshold of regular and irregular LDPC codes using Gaussian approximation. 2009 Wireless Telecommunications Symposium. 1-7 (2009) [Google Scholar]
  14. G. Zhang, Y. Xu, D. He, J. Sun, W. Zhang. Performance Analysis of LDPC-BICM System Based on Gaussian Approximation. IEEE Transactions on Broadcasting. March. 65(1), 166-171 (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.