Open Access
MATEC Web Conf.
Volume 333, 2021
The 18th Asian Pacific Confederation of Chemical Engineering Congress (APCChE 2019)
Article Number 05006
Number of page(s) 5
Section Chemical Reaction Engineering
Published online 08 January 2021
  1. Beauchet, R., F. Monteil-Rivera, and J. M. Lavoie; “Conversion of Lignin to Aromatic-based Chemicals (Lchems) and Biofuels (L-fuels),” Bioresour. Technol., 121, 328–334 (2012) [CrossRef] [Google Scholar]
  2. Galkin, M. V. and J. S. Samec; “Lignin Valorization Through Catalytic Lignocellulose Fractionation: A Fundamental Platform for the Future Biorefinery,” ChemSusChem, 9, 1544–1558 (2016) [CrossRef] [Google Scholar]
  3. Gierer, J.; “Chemical Aspects of Kraft Pulping,” Wood Sci. Technol., 14 (4), 241–266 (1980) [CrossRef] [Google Scholar]
  4. Katahira, R., A. Mittal, K. McKinney, X. Chen, M. P. Tucker, D. K. Johnson, and G. T. Beckham; “BaseCatalyzed Depolymerization of Biorefinery Lignins,” ACS Sustainable Chem. Eng., 5, 1474–1486 (2016) [CrossRef] [Google Scholar]
  5. Kudo, S., Y. Hachiyama, Y. Takashima, J. Tahara, S. Idesh, K. Norinaga, and J.-i. Hayashi; “Catalytic Hydrothermal Reforming of Lignin in Aqueous Alkaline Medium,” Energy Fuels, 28, 76–85 (2014) [CrossRef] [Google Scholar]
  6. Nishioka, S., S. Kudo, Y. Takashima, Y. Hachiyama, K. Norinaga, and J.-i. Hayashi; “Hydrothermal Conversion of Lignin to Monomeric Phenols and Fuel Gas Using Alkaline Aqueous Solution,” Proc. of the 4th ASCONIEEchE 2014, pp. 56–61, Hualien, Taiwan (2014) [Google Scholar]
  7. Otromke, M., R. J. White, and J. Sauer; “Hydrothermal Base Catalyzed Depolymerization and Conversion of Technical Lignin – An Introductory Review,” Carbon Resour. Conv., 2, 59–71 (2019) [Google Scholar]
  8. Rahimi, A., A. Ulbrich, J. J. Coon, S. and S. Stahl; “Formic-acid-induced Depolymerization of Oxidized Lignin to Aromatics,” Nature, 515, 249–252 (2014) [CrossRef] [Google Scholar]
  9. Rinaldi, R., R. Jastrzebski, M. T. Clough, J. Ralph, M. Kennema, P. C. Bruijnincx, and B. M. Weckhuysen; “Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis,” Angew. Chem. Int. Ed., 55, 8164–8215 (2016) [CrossRef] [Google Scholar]
  10. Rodrigues Pinto, P. C., E. A. Borges da Silva, and A. E. Rodrigues; “Insights into Oxidative Conversion of Lignin to High-Added-Value Phenolic Aldehydes,” Ind. Eng. Chem. Res., 50, 741–748 (2011) [CrossRef] [Google Scholar]
  11. Shuai, L., M. T. Amiri, Y. M. Questell-Santiago, L. Héroguel, Y. Li, H. Kim, R. Meilan, C. Chapple, J. Ralph, and J. S. Luterbacher; “Formaldehyde Stabilization Facilitates Lignin Monomer Production During Biomass Depolymerization,” Science, 354, 329–333 (2016) [CrossRef] [Google Scholar]
  12. Song, Q., F. Wang, J. Cai, Y. Wang, J. Zhang, W. Yu, and J. Xu; “Lignin Depolymerization (LDP) in Alcohol Over Nickel-based Catalysts via a Fragmentation– Hydrogenolysis Process,” Energy Environ. Sci., 6, 994–1007 (2013) [CrossRef] [Google Scholar]
  13. Van den Bosch, S., T. Renders, S. Kennis, S. F. Koelewijn, G. Van den Bossche, T. Vangeel, A. Deneyer, D. Depuydt, C. M. Courtin, J. M. Thevelein, W. Schutyser, and B. Sels; “Integrating Lignin Valorization and Bio-ethanol Production: on the Role of Ni-Al2O3 Catalyst Pellets during Lignin-first Fractionation,” Green Chem., 19, 3313–3326 (2017) [CrossRef] [Google Scholar]
  14. Vigneault, A., D. K. Johnson, and E. Chornet; “BaseCatalyzed Depolymerization of Lignin: Separation of Monomers,” Can. J. Chem. Eng., 85, 906–916 (2007) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.