Open Access
Issue
MATEC Web Conf.
Volume 331, 2020
International Conference on Urban Disaster Resilience (ICUDR 2019)
Article Number 03005
Number of page(s) 14
Section Renewable Energy
DOI https://doi.org/10.1051/matecconf/202033103005
Published online 09 December 2020
  1. Mayasari, F. and R. Dalimi. Vegetable oil-based biodiesel feedstock potential in Indonesia. in 2014 Makassar International Conference on Electrical Engineering and Informatics (MICEEI). 2014. [Google Scholar]
  2. Haroen, Y. Hydro, solar, and wind energy as potential electrical power plant in Indonesia — Past conditions and future prospects. in 2016 3rd International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE). 2016. [Google Scholar]
  3. Siswanto, A., et al., Stability improvement of wind turbine penetrated using power system stabilizer (PSS) on South Sulawesi transmission system. AIP Conference Proceedings, 2018. 1941(1): p. 020036. [Google Scholar]
  4. Nisworo, S. and D. Pravitasari. Potential of irrigation channel as the new renewable energy sources. in 2017 International Conference on Sustainable Information Engineering and Technology (SIET). 2017. [Google Scholar]
  5. Velmurugan, V. and K. Srithar, Solar stills integrated with a mini solar pond — analytical simulation and experimental validation. Desalination, 2007. 216(1): p. 232-241. [Google Scholar]
  6. Şencan, A., et al., Different methods for modeling absorption heat transformer powered by solar pond. Energy Conversion and Management, 2007. 48(3): p. 724-735. [Google Scholar]
  7. Tundee, S., N. Srihajong, and S. Charmongkolpradit, Electric Power Generation from Solar Pond Using Combination of Thermosyphon and Thermoelectric Modules. Energy Procedia, 2014. 48: p. 453-463. [Google Scholar]
  8. Egbe, J., Design of Solar Pond calculation and technique in Africa. Vol. 6. 2013. 22-32. [Google Scholar]
  9. Liu, H., et al., Experiment and simulation study of a trapezoidal salt gradient solar pond. Solar Energy, 2015. 122: p. 1225-1234. [Google Scholar]
  10. Kanan, S., J. Dewsbury, and G. F. Lane-Serff, Simulation of Solar Air-Conditioning System with Salinity Gradient Solar Pond. Energy Procedia, 2015. 79: p. 746-751. [Google Scholar]
  11. Alcaraz, A., et al., Enhancing the efficiency of solar pond heat extraction by using both lateral and bottom heat exchangers. Solar Energy, 2016. 134: p. 82-94. [Google Scholar]
  12. dkk;, Z. M., Studi Perbandingan Pengaruh Temperatur Miniatur Matahari dengan Lampu Sorot pada Solar Pond. Proceeding Seminar Nasional Teknik Elektro dan Informatika (SNTEI), 2017: p. p. 247-251. [Google Scholar]
  13. Singh, B., et al. Power generation from salinity gradient solar pond using thermoelectric generators for renewable energy application. in 2012 IEEE International Conference on Power and Energy (PECon). 2012. [Google Scholar]
  14. Hull, J.R., et al., Dependence of ground heat loss upon solar pond size and perimeter insulation calculated and experimental results. Solar Energy, 1984. 33(1): p. 25-33. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.