Open Access
MATEC Web Conf.
Volume 331, 2020
International Conference on Urban Disaster Resilience (ICUDR 2019)
Article Number 03002
Number of page(s) 13
Section Renewable Energy
Published online 09 December 2020
  1. Chambel, A. (2015). The role of groundwater in the management of water resources in the World. IAHS-AISH Proceedings and Reports, 366 (June 2014), 107–108. [CrossRef] [Google Scholar]
  2. Chandel, S.S., NagarajuNaik, M., & Chandel, R. (2015). Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies. Renewable and Sustainable Energy Reviews, 49, 1084–1099. [CrossRef] [Google Scholar]
  3. Coskun, C., Toygar, U., Sarpdag, O., & Oktay, Z. (2017). Sensitivity analysis of implicit correlations for photovoltaic module temperature: A review. Journal of Cleaner Production, 164, 1474–1485. [CrossRef] [Google Scholar]
  4. Indonesia in energy crisis: Pertamina director - Business - The Jakarta Post. (n. d. ). Retrieved April 9, 2020, from [Google Scholar]
  5. Jagan, M., Rao, M., Sahu, M.K., & Subudhi, P.K. (2018). ScienceDirect PMME 2016 PV Based Water Pumping System For. Materials Today: Proceedings, 5(1), 1008–1016. [CrossRef] [Google Scholar]
  6. Kornelakis, A. (2010). Multiobjective Particle Swarm Optimization for the optimal design of photovoltaic grid-connected systems. Solar Energy, 84(12), 2022–2033. [CrossRef] [Google Scholar]
  7. Kou, Q., Klein, S.A., & Beckman, W.A. (1998). A method for estimating the long-term performance of direct-coupled PV pumping systems. Solar Energy, 64(1–3), 33-40. [CrossRef] [Google Scholar]
  8. Kusma, A. (2015). Strategies for Troubleshooting Energy Crisis in Indonesia Through Optimization Electrical Energy. 16-31. [Google Scholar]
  9. Mehmood, U., Al-Ahmed, A., Al-Sulaiman, F.A., Malik, M.I., Shehzad, F., & Khan, A.U.H. (2017). Effect of temperature on the photovoltaic performance and stability of solid-state dye-sensitized solar cells: A review. Renewable and Sustainable Energy Reviews, 79(May), 946-959. [CrossRef] [Google Scholar]
  10. Nogueira, C.E.C., Bedin, J., Niedzialkoski, R.K., De Souza, S.N.M., & Das Neves, J.C.M. (2015). Performance of monocrystalline and polycrystalline solar panels in a water pumping system in Brazil. Renewable and Sustainable Energy Reviews, 51, 1610-1616. [CrossRef] [Google Scholar]
  11. Odeh, I., Yohanis, Y.G., & Norton, B. (2006). Influence of pumping head, insolation and PV array size on PV water pumping system performance. Solar Energy, 80(1), 51-64. [CrossRef] [Google Scholar]
  12. Patil, S.S., & Zende, R.M. (2017). Solar powered water pumping system. Proceedings of 2017 3rd IEEE International Conference on Sensing, Signal Processing and Security, ICSSS 2017, 186-190. [Google Scholar]
  13. robert Foster, Majid Ghassemi, Alma CotaEnergy, R. (2009). SOLAR ENERGY Renewable Energy and the Environment (abbas ghassemi (New Mexico State University), Ed. ). CRC Press Taylor & Francis Group. [CrossRef] [Google Scholar]
  14. Sarjan, M., Arifin, Y., Amir, A., & Masarrang, M. (2017). Pompa Air dengan Sumber Photovoltaic. (November), 169-172. [Google Scholar]
  15. Wu, C.W., Peng, Q., & Huang, C.G. (2017). Thermal analysis on multijunction photovoltaic cell under oblique incident laser irradiation. Energy, 134, 248-255. [CrossRef] [Google Scholar]
  16. Zilli, B.M., Lenz, A.M., deSouza, S.N.M., Secco, D., Nogueira, C.E.C., Junior, O.H.A., Gurgacz, F. (2018). Performance and effect of water-cooling on a microgeneration system of photovoltaic solar energy in Paraná Brazil. Journal of Cleaner Production, 192, 477-485. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.