Open Access
Issue
MATEC Web Conf.
Volume 329, 2020
International Conference on Modern Trends in Manufacturing Technologies and Equipment: Mechanical Engineering and Materials Science (ICMTMTE 2020)
Article Number 03065
Number of page(s) 7
Section Mechanical Engineering
DOI https://doi.org/10.1051/matecconf/202032903065
Published online 26 November 2020
  1. V.M. Segal, Razvitie obrabotki materialov intensivnoj sdvigovoj deformaciej, Metally, № 1, s. 5-14 (2004) (Development of material processing by intense shear deformation) [in Russian]. [Google Scholar]
  2. R.Z. Valiev, I.V. Aleksandrov, Paradoks intensivnoj plasticheskoj deformacii metallov, Doklady akademii nauk, №1, t. 380, s. 34-37 (2001) (The paradox of severe plastic deformation of metals) [in Russian]. [Google Scholar]
  3. Y.T. Zhu, H. Jiang, J. Huang etc., A new route to bulk nanostructured metals, Metallurgical and Materials Transactions A., No. 6, v. 32, pp. 1559-1562 (2001). DOI:https://doi.org/10.1007/s11661-001-0245-0. [Google Scholar]
  4. V.V. Stolyarov, Features of deformation behavior at rolling and tension under current in TiNi alloy, Reviews on Advanced Materials Science, No. 2, v. 25, pp. 194-202 (2010). [Google Scholar]
  5. L. Li, J. Virta, Ultrahigh strength steel wires processed by severe plastic deformation for ultrafine grained microstructure, Materials Science and Technology, N. 5, v. 27, pp. 845-862 (2011). DOI:10.1179/026708310X12677993662087. [Google Scholar]
  6. G.G. Maier, E.G. Astafurova, H.J. Maier, etc., Annealing behavior of ultrafine grained structure in low-carbon steel produced by equal channel angular pressing, Materials Science and Engineering A., No. 1, v. 581, pp. 104-107 (2013). [Google Scholar]
  7. G.A. Salishchev, O.R. Valiakhmetov, R.M Galeyev, Formation of submicrocrystalline structure in the titanium alloy VT8 and its influence on mechanical properties, Journal of Materials Science, Issue 11, v. 28, pp. 2898-2902 (1993). [Google Scholar]
  8. M.I. Mazurskij, F.U. Enikeev, O nekotoryh principah polucheniya odnorodnoj sverhmelkozernistoj struktury metodami obrabotki metallov davleniem, Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem, № 7, s. 15-18 (2000) (On some principles of obtaining a homogeneous ultrafine-grained structure by pressure metal treatment) [in Russian]. [Google Scholar]
  9. K-T. Park, L. Park, H.J. Kim, ets., Analysis on dynamic tensile extrusion behavior of UFG OFHC Cu, 2014 IOP Conf. Ser.: Materials Science and Engineering, v. 63 (2014) 012144 (http://iopscience.iop.org/1757-899X/63/1/012144). [Google Scholar]
  10. A.V. Zavdoveev, Osobennosti formirovaniya struktury i svojstv malouglerodistoj stali pri teploj vintovoj ekstruzii, Fizika i tekhnika vysokih davlenij, № 4, t. 23, s. 100-106 (2013) (Features of the formation of the structure and properties of low-carbon steel during warm screw extrusion) [in Russian]. [Google Scholar]
  11. T. Donic, M. Martikán, B. Hadzima, New unique ECAP system with ultrasound and backpressure, 2014 IOP Conf. Ser.: Materials Science and Engineering, v. 63 (2014) 012047 (http://iopscience.iop.org/1757-899X/63/1/012047). [Google Scholar]
  12. Ya.E. Bejgel’zimer, V.N. Varyuhin, D.V. Orlov i dr., Vintovaya ekstruziya – process nakopleniya deformacii, Firma TEAN, Doneck, 2003 (Screw extrusion as strain accumulation process) [in Russian]. [Google Scholar]
  13. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science, Issue 2, v. 45, pp. 103-189 (2000). [Google Scholar]
  14. R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Progress in Materials Science, Issue 7, v. 51, pp. 881-981 (2006). [Google Scholar]
  15. O.R. Valiahmetov, R.M. Galeev, G.A. Salishchev, Mekhanicheskie svojstva titanovogo splava VT8 s submikrokristallicheskoj strukturoj, Fizika metallov i metallovedenie, № 10, s. 204-206 (1990) (Mechanical properties of titanium alloy VT8 with a submicrocrystalline structure) [in Russian]. [Google Scholar]
  16. J. Richert, M. Richert, Producing bulk ultrafine grained materials by severe plastic deformation, Aluminium, v. 62, pp. 604-607 (1986). [Google Scholar]
  17. D.V. Orlov, V.V. Stolyarov, H.Sh. Salimgareyev, E.P. Soshnikova, A.V. Reshetov, Ya.Ye. Beygelzimer, S.G. Synkov, V.N. Varyukhinet. In: Shu Y.T., Langdon T.G., Valiev R.Z., Semiatin S.L., Shin D.H., Lowe T.C., editors. Ultrafine Grained Materials III. Warrendale (PA): TMS; 2004. p. 457. [Google Scholar]
  18. A.M. Ivanov, N.D. Petrova, S.S. Vashchenko, Kanal’noe uglovoe pressovanie mednoj plastiny, Fundamental’nye i prikladnye problemy tekhniki i tekhnologii, № 4/2, t. 288, s. 56-60 (2011) (Channel angular pressing of copper plate) [in Russian]. [Google Scholar]
  19. A.M. Ivanov, Pressovanie prizmaticheskih i vintovyh profilej iz medi M4, Izvestiya VUZov. Cvetnaya metallurgiya, № 3, s. 77–84 (2017). DOI:10.17073/0021-3438-2017-3-77-84 (Pressing prismatic and screw profiles from copper M4) [in Russian]. [Google Scholar]
  20. A.M. Ivanov, V.A. Ivanov, M.A. Ivanov, Sposob uprochneniya kol’cevoj zagotovki kanal’nym uglovym pressovaniem i ustrojstvo dlya ego osushchestvleniya: pat. 2450882 Ros. Federaciya. № 2008152005; zayavl. 26.12.2008; opubl. 20.05.2012. Byull. № 14. 5 s. (Method of hardening an annular billet by channel angular pressing and a device for its implementation) [in Russian]. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.