Open Access
MATEC Web Conf.
Volume 323, 2020
10th International Conference of Advanced Models and New Concepts in Concrete and Masonry Structures (AMCM 2020)
Article Number 01020
Number of page(s) 10
Section Adnanced Models and New Concepts in Concrete Structures
Published online 05 October 2020
  1. E. Brühwiler, Strengthening of existing structures using R-UHPFRC: Principles and conceptual design. UHPFRC 2017, Montpellier, France, 993-1002 (2017). [Google Scholar]
  2. L.N. Koutas, Z. Tetta, D.A Bournas., T.C. Triantafillou, Strengthening of Concrete Structures with Textile Reinforced Mortars: State-of-the-Art Review, J. Compos. Constr., 23, 1, (2019). [Google Scholar]
  3. M. Ricker, F. Häusler, N. Randl, Punching strength of flat plates reinforced with UHPC and doubleheaded studs, Eng. Struct., 136, 345–354 (2017). [Google Scholar]
  4. E. Júlio, F. Branco; V. Silva, J. Lourenco, Influence of added concrete compressive strength on adhesion to an existing concrete substrate, Build. Env., 41, 1934–1939 (2006). [Google Scholar]
  5. M. Munoz, D. Harris, T. Ahlborn, D. Froster, Bond Performance between Ultrahigh-Performance Concrete and Normal-Strength Concrete, J. Mater. Civ. Eng . (2013). [Google Scholar]
  6. N. Randl, M. Peyerl, M. Steiner, Sustainable strengthening of RC members with High Performance Concrete overlays, IABMAS 2016, Proceedings, 1308–1315 (2016). [Google Scholar]
  7. N. Randl, M. Peyerl, M. Steiner, Hochfester Aufbeton zur Tragwerksverstärkung, Teil 1: Kleinkörperversuche, Beton- und Stahlbetonbau, 115, 2, 106-116 (2020). [Google Scholar]
  8. G. Golewski, T. Sadowski, Fracture Toughness at Shear (Mode II) of Concretes Made of Natural and Broken Aggregates, Brittle Matrix Compos. 8, 537-546 (2006). [Google Scholar]
  9. G. Golewski, T. Sadowski, Experimental Investigation and Numerical Modeling Fracture Processes under Mode II in Concrete Composites Containing Fly-Ash Additive at early Age, Sol. State Phenom., 188, 158-163 (2012). [Google Scholar]
  10. N. Randl, Design recommendations for interface shear transfer in fib Model Code 2010, Struct. Concr., 14, 3, 230-241 (2013). [Google Scholar]
  11. C. Zanotti, N. Randl, Are concrete-concrete bond tests comparable?, Cem. Concr. Compos., 99, 80–88 (2019). [Google Scholar]
  12. Đ. Čairovic, A. de la Fuente A, M. Zlámal, et al, Suitability of different tests for characterization of the dimpled concrete-to-concrete interface. Struct. Concr., 1-18 (2020). [Google Scholar]
  13. N. Randl, M. Steiner, M.: Hochfester Aufbeton zur Tragwerksverstärkung, Teil 2: Bauteilversuche, Beton- und Stahlbetonbau, 115, 5, 375-384 (2020) (in German). [Google Scholar]
  14. B. Bissonnette, L. Courard, D.W. Fowler, J.-L. Granju (Eds.), Bonded Cement-Based Material Overlays for the Repair, the Lining or the Strengthening of Slabs or Pavements, State-of-the-Art Report of RILEM Technical Committee 193-RLS (2011). [Google Scholar]
  15. J. Silfwerbrand, Shear bond strength in repaired concrete structures, Mater. Struct., 36, 419-424 (2003). [Google Scholar]
  16. T. Mészöly, S. Ofner, N. Randl, Mechanical properties of glass and carbon textile reinforced UHPC, Proceedings of the fib Symposium 2019: Concrete - Innovations in Materials, Design and Structures , 289-296 (2019). [Google Scholar]
  17. B. B. Adhikary, H. Mutsuyoshi, Shear strengthening of reinforced concrete beams using various techniques. Constr. Build. Mater., 20, 6, 366–373 (2006). [CrossRef] [Google Scholar]
  18. N. Randl, J. Kunz, Biegeschubversuche an Stahlbetonbalken mit nachträglich eingemörtelter Querkraftbewehrung, Beton- und Stahlbeton, 104, 11, 728-736 (2009). [Google Scholar]
  19. N. Randl, Load Bearing Behaviour of Cast‐in Shear Dowels, Beton- und Stahlbetonbau, 102, 1, 31–37 (2007). [Google Scholar]
  20. N. Randl, P. Harsányi, Developing optimized strengthening systems for shear‐deficient concrete members, Structural Concrete, 19, 1, 116–128 (2018). [Google Scholar]
  21. T.C. Triantafillou, Shear Strengthening of Reinforced Concrete Beams Using Epoxy-Bonded FRP Composites. ACI Struct. J., 95, 2, 107–115 (1998). [Google Scholar]
  22. A. Belarbi, S.-W. Bae, A. Brancaccio, Behavior of full-scale RC T-beams strengthened in shear with externally bonded FRP sheets. Constr. Build. Mater., 32, 27-40 (2012). [CrossRef] [Google Scholar]
  23. A. Khalifa, A. Nanni, Rehabilitation of rectangular simply supported RC beams with shear deficiencies using CFRP composites. Constr. Build. Mater., 16, 3, 135-146 (2002). [CrossRef] [Google Scholar]
  24. I. Bukhari, R. Vollum, S. Ahmad S, J. Sagaseta, Shear strengthening of reinforced concrete beams with CFRP, Mag. Concr. Res., 62, 1 65-77 (2010). [CrossRef] [Google Scholar]
  25. J. Stoerzel, N. Randl, A. Strauss, Monitoring shear-induced degradation of reinforced and pre-tensioned concrete members, IABSE Conference Report, Geneva 2015, 1148–1157 (2015). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.