Open Access
Issue
MATEC Web Conf.
Volume 322, 2020
MATBUD’2020 – Scientific-Technical Conference: E-mobility, Sustainable Materials and Technologies
Article Number 01025
Number of page(s) 8
Section E-mobility, Sustainable Materials and Technologies
DOI https://doi.org/10.1051/matecconf/202032201025
Published online 14 October 2020
  1. F. Rajabipour, E. Giannini, C. Dunant, et al, Cem. Concr. Res. 76, 130-146 (2015) [CrossRef] [Google Scholar]
  2. R.B. Figueira, R. Sousa, L. Coelho, et al, Constr. Build. Mater. 222, 903-931 (2019) [CrossRef] [Google Scholar]
  3. D. Jóźwiak-Niedźwiedzka, A. Antolik, K. Dziedzic, M.A. Glinicki, K. Gibas, Roads and Bridges 18, 67-83 (2019) [Google Scholar]
  4. I. Fernandes, M.A.T.M. Broekmans, Metallogr. Microstruct. Anal. 2, 257-267 (2013) [CrossRef] [Google Scholar]
  5. P.R. Rangaraju, K. Sompura, J. Desai, J. Olek, Airfield and Highway Pavements, 486-497 (2006) [Google Scholar]
  6. L.F.M. Sanchez, B. Fournier, M. Jolin, et al, Cem. Concr. Res. 93, 17-31 (2017) [CrossRef] [Google Scholar]
  7. Š. Lukschová R. Přikryl, Z. Pertold, Mag. Concr. Res. 61, 645-654 (2009) [CrossRef] [Google Scholar]
  8. D. Jóźwiak-Niedźwiedzka, K. Gibas, M.A. Glinicki, Roads and Bridges 16, 223-239 (2017) [Google Scholar]
  9. Z. Naziemiec, Roads and Bridges 17, 271-283 (2018) [Google Scholar]
  10. ASTM C 1260-14, American Society for Testing and Materials, Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method), (Annual Book of ASTM Standards, Vol. 04.02, Philadelphia, 2014) [Google Scholar]
  11. RILEM Recommended Test Method: AAR-2—Detection of Potential Alkali-Reactivity - Accelerated Mortar-Bar Test Method for Aggregates (in RILEM Recommendations for the Prevention of Damage by Alkali-Aggregate Reactions in New Concrete Structures, Eds. P. J. Nixon, I. Sims, Springer Netherlands, 61-77, 2016) [Google Scholar]
  12. A. Garbacik, M.A. Glinicki, D. Jóźwiak-Niedźwiedzka, G. Adamski, K. Gibas, Technical guidelines for the classification of domestic aggregates and the prevention of alkali-aggregate reaction in concrete used in road pavements and engineering structures (GDDKiA, https://www.gddkia.gov.pl/pl/1118/dokumenty-techniczne, 1-94, 2019) [Google Scholar]
  13. S. Poyet, A. Sellier, B. Capra, et al, Mater. Struct. Constr. 40, 229-239 (2007) [CrossRef] [Google Scholar]
  14. M. Cyr, P, Rivard, F. Labrecque, Cem. Concr. Compos. 31,438-446 (2009) [CrossRef] [Google Scholar]
  15. B.J. Wigum, L.T. Pedersen, B. Grelk, J. Lindgård, State-of-the art report: Key parameters influencing the alkali aggregate reaction (SINTEF Building and Infrastructure, 2006) [Google Scholar]
  16. B.M. Pedersen, B.J. Wigum, J. Lindgård, Influence of aggregate particle size on the alkali- silica reaction - a literature review (15th International Conference on Alkali-Aggregate Reaction, 2016) [Google Scholar]
  17. D. Jóźwiak-Niedźwiedzka, R. Jaskulski, M.A. Glinicki, Materials 9 (4), 224 (2016) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.