Open Access
Issue
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
Article Number 12032
Number of page(s) 5
Section Microstructure Evolution
DOI https://doi.org/10.1051/matecconf/202032112032
Published online 12 October 2020
  1. J.D. Cotton, R.D. Briggs, R.R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, and J.C. Fanning, “State of the art in beta titanium alloys for airframe applications,” JOM, vol. 67, no. 6. Springer, pp. 1281-1303, 2015. [CrossRef] [Google Scholar]
  2. Titanium Metals Corporation, “Timetal 10-2-3,” 2018. [Online]. Available: http://www.t,met.com/assets/local/documents/datasheets/metastablebetaalloys/10-2-3.pdf. [Google Scholar]
  3. C.C. Chen and R.R. Boyer, “Practical considerations for manufacturing high-strength Ti-10V-2Fe-3Al alloy forgings,” JOM, vol. 31, no. 7, pp. 33-39, 1979. [CrossRef] [Google Scholar]
  4. T.W. Duerig, G.T. Terlinde, and J.C. Williams, “Phase transformations and tensile properties of Ti-10V-2Fe-3Al,” Metall. Trans. A, vol. 11, no. December 1980, pp. 1987-1998, 1987. [CrossRef] [Google Scholar]
  5. R.R. Boyer and G.W. Kuhlman, “Processing properties relationships of Ti-10V-2Fe-3Al,” Metall. Trans., vol. 18, no. December, pp. 2095-2103, 1987. [CrossRef] [Google Scholar]
  6. G.W. Kuhlman, A.K. Chakrabarti, T. L Yu, R. Pishko, and G. Terlinde, “LCF, fracture toughness, and fatigue/fatigue crack propagation resistance optimization in Ti-10V-2Fe-3Al alloy through microstructural modification,” Metall. Soc, pp. 171-192, 1987. [Google Scholar]
  7. G. Terlinde, H.-J. Rathjen, and K.-H. Schwalbe, “Microstructure and fracture toughness of the aged β-Ti Alloy Ti-10V-2Fe-3Al,” Metall. Trans., vol. 19, no. 4, pp. 1037-1049, 1988. [CrossRef] [Google Scholar]
  8. G.R. Yoder, R.R. Boyer, and L. Cooley, “Corrosion fatigue resistance of Ti-10V-2Fe-3Al alloy in salt water,” in Sixth World Conference on Titanium, 1988, pp. 1741-1746. [Google Scholar]
  9. S.K. Jha and K.S. Ravichandran, “High-cycle fatigue resistance in beta-titanium alloys,” JOM, vol. 52, no. 3, pp. 30-35, 2000. [CrossRef] [Google Scholar]
  10. H.W. Rosenberg, “Titanium alloying in theory and practice,” in The Science, Technology and Application of Titanium, Elsevier, 1970, pp. 851-859. [Google Scholar]
  11. C.C. Chen and R.R. Boyer, “Practical considerations for manufacturing high-strength Ti-10V-2Fe-3Al alloy forgings,” JOM, vol. 31, no. 7, pp. 33-39, 1979. [CrossRef] [Google Scholar]
  12. V. V Balasubrahmanyam and Y.V.R.K. Prasad, “Hot deformation mechanisms in metastable beta titanium alloy Ti-10V-2Fe-3Al,” Mater. Sci. Technol., vol. 17, no. 10, pp. 1222-1228, 2001. [CrossRef] [Google Scholar]
  13. L Lei, X. Huang, M. Wang, L. Wang, J. Qin, H. Li, and S. Lu, “Effect of hot compressive deformation on the martensite transformation of Ti-10V-2Fe-3Al titanium alloy,” Mater. Sci. Eng. A, vol. 530, pp. 591-601, 2011. [CrossRef] [Google Scholar]
  14. J.R. Toran and R.R. Biederman, “Phase transformation study of Ti-10V-2Fe-3Al,” Titanium’80 Sci. Technol., pp. 1491-1500, 1980. [Google Scholar]
  15. D.G. Robertson and H.B. McShane, “Isothermal hot deformation behaviour of metastable β titanium alloy Ti-10V-2Fe-3AI,” Mater. Sci. Technol., vol. 13, no. 7, pp. 575-583, 1997. [CrossRef] [Google Scholar]
  16. Y. Ohmori, T. Ogo, K. Nakai, and S. Kobayashi, “Effects of ω-phase precipitation on β → α, α″ transformations in a metastable β titanium alloy,” Mater. Sci. Eng. A, vol. 312, no. 1-2, pp. 182-188, 2001. [CrossRef] [Google Scholar]
  17. M. Jackson, N.G. Jones, and D. Dye, “Effect of initial microstructure on plastic flow behaviour during isothermal forging of Ti-10V-2Fe-3Al,” Mater. Sci. Eng. A, vol. 501, no. 1-2, pp. 248-254, 2009. [CrossRef] [Google Scholar]
  18. G.Z. Quan, W.Q. Lv, J.T. Liang, S.A. Pu, G.C. Luo, and Q. Liu, “Evaluation of the hot workability corresponding to complex deformation mechanism evolution for Ti-10V-2Fe-3Al alloy in a wide condition range,” J. Mater. Process. Technol., vol. 221, pp. 66-79, 2015. [CrossRef] [Google Scholar]
  19. P. Barriobero-Vila, G. Requena, F. Warchomicka, A. Stark, N. Schell, and T. Buslaps, “Phase transformation kinetics during continuous heating of a β-quenched Ti-10V-2Fe-3Al alloy,” J. Mater. Sci., vol. 50, no. 3, pp. 1412-1426, 2015. [CrossRef] [Google Scholar]
  20. G.T. Terlinde, T.W. Duerig, and J.C. Williams, “Microstructure, tensile deformation, and fracture in aged ti 10V-2Fe-3Al,” Metall. Trans. A, vol. 14, no. 10, pp. 2101-2115, 1983. [CrossRef] [Google Scholar]
  21. T.W. Duerig, J.E. Allison, and J.C. Williams, “Microstructural influences on fatigue crack propagation in Ti-10V-2Fe-3Al,” Metall. Trans. A, vol. 16, no. 5, pp. 739-751, 1985. [CrossRef] [Google Scholar]
  22. G.T. Terlinde, T. W Duerig, and J.C. Williams, “The effect of heat treatment on microstructure and tensile properties of Ti-10V-2Fe-3Al,” Titan. ‘80 Sci. Technol., vol. 2, pp. 1571-1581, 1980. [Google Scholar]
  23. B. Tang, H. Kou, X. Zhang, P. Gao, and J. Li, “Study on the formation mechanism of α lamellae in a near β titanium alloy,” Prog. Nat. Sci. Mater. Int., vol. 26, no. 4, pp. 385-390, 2016. [CrossRef] [Google Scholar]
  24. S. Nag, Y. Zheng, R.E.A. Williams, A. Devaraj, A. Boyne, Y. Wang, P.C. Collins, G.B. Viswanathan, J.S. Tiley, B.C. Muddle, R. Banerjee, and H. L Fraser, “Non-classical homogeneous precipitation mediated by compositional fluctuations in titanium alloys,” Acta Mater., vol. 60, no. 18, pp. 6247-6256, 2012. [CrossRef] [Google Scholar]
  25. N.G. Jones, R.J. Dashwood, M. Jackson, and D. Dye, “β Phase decomposition in Ti-5Al-5Mo-5V-3Cr,” Acta Mater., vol. 57, no. 13, pp. 3830-3839, 2009. [CrossRef] [Google Scholar]
  26. Y. Zheng, R.E.A. Williams, J.M. Sosa, Y. Wang, R. Banerjee, and H.L. Fraser, “The role of the ω phase on the non-classical precipitation of the α phase in metastable β-titanium alloys,” Scr. Mater., vol. 111, pp. 81-84, 2016. [CrossRef] [Google Scholar]
  27. Y. Zheng, R.E.A. Williams, J.M. Sosa, T. Alam, Y. Wang, R. Banerjee, and H.L. Fraser, “The indirect influence of the ω phase on the degree of refinement of distributions of the α phase in metastable β-Titanium alloys,” Acta Mater., vol. 103, pp. 165-173, 2016. [CrossRef] [Google Scholar]
  28. J.C. Williams, B.S. Hickman, and D.H. Leslie, “The effect of ternary additions on the decompositon of metastable beta-phase titanium alloys,” Metall. Trans., vol. 2, no. 2, pp. 477-484, 1971. [CrossRef] [Google Scholar]
  29. J.C. Williams, D. de Fontaine, and N.E. Paton, “The ω-phase as an example of an unusual shear transformation,” Metall. Trans., vol. 4, no. 12, pp. 2701-2708, 1973. [CrossRef] [Google Scholar]
  30. M.J. Blackburn and J.C. Williams, “Phase transformations in Ti-Mo and Ti-V alloys,” Trans. Metall. Soc. AIME, pp. 2461-2469, 1968. [Google Scholar]
  31. J.C. Williams and M.J. Blackburn, “Influence of misfit on morphology and atability of omega phase in Titanium - transition metal alloys,” Trans. Metall. Soc. Aime, vol. 245, no. 10, pp. 2352-2355, 1969. [Google Scholar]
  32. S. Nag, R. Banerjee, R. Srinivasan, J.Y. Hwang, M. Harper, and H.L. Fraser, “ω-Assisted nucleation and growth of α precipitates in the Ti-5Al-5Mo-5V-3Cr-0.5Fe β titanium alloy,” Acta Mater., vol. 57, no. 7, pp. 2136-2147, 2009. [CrossRef] [Google Scholar]
  33. T. Li, D. Kent, G. Sha, M.S. Dargusch, and J.M. Cairney, “The mechanism of ω-assisted α phase formation in near β-Ti alloys,” Scr. Mater., vol. 104, pp. 75-78, 2015. [CrossRef] [Google Scholar]
  34. Y. Zheng, R.E.A. Williams, D. Wang, R. Shi, S. Nag, P. Kami, J.M. Sosa, R. Banerjee, Y. Wang, and H. L Fraser, “Role of ω phase in the formation of extremely refined intragranular α precipitates in metastable β-titanium alloys,” Acta Mater., vol. 103, pp. 850-858, 2016. [CrossRef] [Google Scholar]
  35. F. Prima, P. Vermaut, G. Texier, D. Ansel, and T. Gloriant, “Evidence of α-nanophase heterogeneous nucleation from ω particles in a β-metastable Ti-based alloy by high-resolution electron microscopy,” Scr. Mater., vol. 54, no. 4 SPEC. ISS., pp. 645-648, 2006. [CrossRef] [Google Scholar]
  36. S. Azimzadeh and H.J. Rack, “Phase transformations in Ti-6.8Mo-4.5Fe-1.5Al,” Metall. Mater. Trans. A, vol. 29, no. 10, pp. 2455-2467, 1998. [CrossRef] [Google Scholar]
  37. B.S. Hickman, “Omega phase precipitation in alloys of titanium with transition metals,” Trans. Metall. Soc. AIME, vol. 245, pp. 1329-1335, 1969. [Google Scholar]
  38. L Hadjadj, M.H. Campagnac, A. Vassel, and A. Menand, “Atom-probe and TEM study of the isothermal ω and secondary α phases in a Ti-10V-2Fe-3Al alloy,” Microsc. Microanal. Microstruct, vol. 3, no. 6, pp. 471-482, 1992. [CrossRef] [Google Scholar]
  39. M.G. Mendiratta, G. Lütjering, and S. Weissman, “Strength increase in Ti 35 Wt Pct Nb through step-aging,” Metall. Trans., vol. 2, no. 9, pp. 2599-2605, 1971. [CrossRef] [Google Scholar]
  40. G.M. Pennock, H.M. Flower, and D.R.F. West, “The control of a precipitation by two step ageing in β Ti-15Mo,” Titanium, pp. 19-22, 1980. [Google Scholar]
  41. J.I. Qazi, B. Marquardt, L F. Allard, and H.J. Rack, “Phase transformations in Ti-35Nb-7Zr-5Ta-(0.06-0.68)O alloys,” in Materials Science and Engineering C, 2005, vol. 25, no. 3, pp. 389-397. [CrossRef] [Google Scholar]
  42. S.A. Mantri, D. Choudhuri, A. Behera, J.D. Cotton, N. Kumar, and R. Banerjee, “Influence of fine-scale alpha precipitation on the mechanical properties of the beta titanium alloy Beta-21S,” Metall. Mater. Trans. A, vol. 46, no. 7, pp. 2803-2808, 2015. [CrossRef] [Google Scholar]
  43. T. Sakamoto, K. Takiue, Y. Higaki, S. Kobayashi, and K. Nakai, “Effect of α phase nucleating at transition phase and dislocation on mechanical properties in metastable β titanium alloy Ti-6.8Mo-4.5Fe-1.5Al,” J. Japan Inst. Met., vol. 79, no. 12, pp. 651-656, 2015. [CrossRef] [Google Scholar]
  44. T.S. Kuan, R.R. Ahrens, and S.L. Sass, “The stress-induced omega phase transformation in Ti-V alloys,” Metall. Trans. A, vol. 6, no. 9, pp. 1767-1774, 1975. [CrossRef] [Google Scholar]
  45. H. Ohyama, H. Nakamori, Y. Ashida, and T. Maki, “Effects of cold deformation on the morphology of α precipitates in β titanium alloys,” ISIJ Int., vol. 32, no. 2, pp. 222-231, 1992. [CrossRef] [Google Scholar]
  46. X. Zhao, M. Niinomi, M. Nakai, and J. Hieda, “Effect of deformation-induced ω phase on the mechanical properties of metastable β-type Ti-V alloys,” Mater. Trans., vol. 53, no. 8, pp. 1379-1384, 2012. [CrossRef] [Google Scholar]
  47. H. Liu, M. Niinomi, M. Nakai, and K. Cho, “Athermal and deformation-induced ω-phase transformations in biomedical beta-type alloy Ti-9Cr-0.2O,” Acta Mater., vol. 106, pp. 162-170, 2016. [CrossRef] [Google Scholar]
  48. T.W. Duerig, J. Albrecht, D. Richter, and P. Fischer, “Formation and reversion of stress induced martensite in Ti-10V-2Fe-3Al,” Acta Metall., vol. 30, no. 12, pp. 2161-2172, 1982. [CrossRef] [Google Scholar]
  49. A. Bhattacharjee, S. Bhargava, V.K. Varma, S. V Kamat, and A.K. Gogia, “Effect of β grain size on stress induced martensitic transformation in β solution treated Ti-10V-2Fe-3Al alloy,” Scr. Mater., vol. 53, no. 2, pp. 195-200, 2005. [CrossRef] [Google Scholar]
  50. A. Bhattacharjee, V.K. Varma, S. V Kamat, A.K. Gogia, and S. Bhargava, “Influence of β grain size on tensile behavior and ductile fracture toughness of titanium alloy Ti-10V-2Fe-3Al,” Metall. Mater. Trans. A, vol. 37, no. 5, pp. 1423-1433, 2006. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.