Open Access
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
Article Number 12015
Number of page(s) 16
Section Microstructure Evolution
Published online 12 October 2020
  1. Geetha, M., et al., Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Progress in materials science, 2009. 54(3): p. 397-425. [Google Scholar]
  2. Gonzalez, J. and J. Mirza-Rosca, Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications. Journal of Electroanalytical Chemistry, 1999. 471(2): p. 109-115. [Google Scholar]
  3. Burstone C.J. and A.J. Goldberg, Beta titanium: a new orthodontic alloy. American journal of orthodontics, 1980. 77(2): p. 121-132. [Google Scholar]
  4. Qazi, J., H. Rack, and B. Marquardt, High-strength metastable beta-titanium alloys for biomedical applications. JOM Journal of the Minerals, Metals and Materials Society, 2004. 56(11): p. 49-51. [Google Scholar]
  5. Rack, H. and J. Qazi, Titanium alloys for biomedical applications. Materials Science and Engineering: C, 2006. 26(8): p. 1269-1277. [Google Scholar]
  6. Wang, K., The use of titanium for medical applications in the USA. Materials Science and Engineering: A, 1996. 213(1-2): p. 134-137. [Google Scholar]
  7. Bania P.J., Beta titanium alloys and their role in the titanium industry. JOM Journal of the Minerals, Metals and Materials Society, 1994. 46(7): p. 16-19. [Google Scholar]
  8. Boyer, R. and R. Briggs, The use of β titanium alloys in the aerospace industry. Journal of Materials Engineering and Performance, 2005. 14(6): p. 681-685. [Google Scholar]
  9. Boyer R.R., New titanium applications on the Boeing 777 airplane. Jom, 1992. 44(5): p. 23-25. [Google Scholar]
  10. Boyer R.R., Aerospace applications of beta titanium alloys. JOM Journal of the Minerals, Metals and Materials Society, 1994. 46(7): p. 20-23. [Google Scholar]
  11. Dalmau, A., et al., Electrochemical behavior of near-beta titanium biomedical alloys in phosphate buffer saline solution. Materials Science and Engineering: C, 2015. 48: p. 55-62. [Google Scholar]
  12. Schutz, R., Environmental behavior of beta titanium alloys. JOM Journal of the Minerals, Metals and Materials Society, 1994. 46(7): p. 24-29. [Google Scholar]
  13. Ahmed, M., et al., The evolution of microstructure and mechanical properties of Ti–5Al–5Mo–5V–2Cr–1Fe during ageing. Journal of Alloys and Compounds, 2015. 629: p. 260-273. [Google Scholar]
  14. Kuroda, D., et al., Design and mechanical properties of new β type titanium alloys for implant materials. Materials Science and Engineering: A, 1998. 243(1): p. 244-249. [Google Scholar]
  15. Laheurte, P., et al., Mechanical properties of low modulus β titanium alloys designed from the electronic approach. Journal of the mechanical behavior of biomedical materials, 2010. 3(8): p. 565-573. [Google Scholar]
  16. Niinomi, M., T. Akahori, and M. Nakai, In situ X-ray analysis of mechanism of nonlinear super elastic behavior of Ti–Nb–Ta–Zr system beta-type titanium alloy for biomedical applications. Materials Science and Engineering: C, 2008. 28(3): p. 406-413. [Google Scholar]
  17. Xie K.Y., et al., Nanocrystalline β-Ti alloy with high hardness, low Young’s modulus and excellent in vitro biocompatibility for biomedical applications. Materials Science and Engineering: C, 2013. 33(6): p. 3530-3536. [Google Scholar]
  18. Zhang, J., et al., Complexion-mediated martensitic phase transformation in Titanium. Nature Communications, 2017. 8: p. 14210. [Google Scholar]
  19. Duerig, T., et al., Formation and reversion of stress induced martensite in Ti-10V-2Fe-3Al. Acta Metallurgica, 1982. 30(12): p. 2161-2172. [Google Scholar]
  20. Furuhara, T., T. Maki, and T. Makino, Microstructure control by thermomechanical processing in β-Ti–15-3 alloy. Journal of Materials Processing Technology, 2001. 117(3): p. 318-323. [Google Scholar]
  21. Jones D.R., et al., The α–ω phase transition in shock-loaded titanium. Journal of Applied Physics, 2017. 122(4): p. 045902. [Google Scholar]
  22. Marteleur, M., et al., On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects. Scripta Materialia, 2012. 66(10): p. 749-752. [Google Scholar]
  23. Nag, S., et al., Novel mixed-mode phase transition involving a composition-dependent displacive component. Physical review letters, 2011. 106(24): p. 245701. [Google Scholar]
  24. Williams, J., D. De Fontaine, and N. Paton, The ω-phase as an example of an unusual shear transformation. Metallurgical Transactions, 1973. 4(12): p. 2701-2708. [Google Scholar]
  25. Zhan, H., et al., On the deformation mechanisms and strain rate sensitivity of a metastable β Ti–Nb alloy. Scripta Materialia, 2015. 107: p. 34-37. [Google Scholar]
  26. Fan, J., et al., The origin of striation in the metastable β phase of titanium alloys observed by transmission electron microscopy. Journal of applied crystallography, 2017. 50(3). [Google Scholar]
  27. Laheurte, P., A. Eberhardt, and M.-J. Philippe, Influence of the microstructure on the pseudoelasticity of a metastable beta titanium alloy. Materials Science and Engineering: A, 2005. 396(1): p. 223-230. [Google Scholar]
  28. Lai, M., et al., Origin of shear induced β to ω transition in Ti–Nb-based alloys. Acta Materialia, 2015. 92: p. 55-63. [Google Scholar]
  29. Salib, M., et al., Influence of transformation temperature on microtexture formation associated with α precipitation at β grain boundaries in a β metastable titanium alloy. Acta Materialia, 2013. 61(10): p. 3758-3768. [Google Scholar]
  30. Zheng, Y., et al., The effect of alloy composition on instabilities in the β phase of titanium alloys. Scripta Materialia, 2016. 116: p. 49-52. [Google Scholar]
  31. Burgers, W., On the process of transition of the cubic-body-centered modification into the hexagonalclose-packed modification of zirconium. Physica, 1934. 1(7-12): p. 561-586. [Google Scholar]
  32. McQuillan, M., Phase transformations in titanium and its alloys. Metallurgical Reviews, 1963. 8(1): p. 41-104. [Google Scholar]
  33. Ng H.P., et al., Phase separation and formation of omega phase in the beta matrix of a Ti–V–Cu alloy. Acta Materialia, 2011. 59(8): p. 2981-2991. [Google Scholar]
  34. Williams, J., B. Hickman, and D. Leslie, The effect of ternary additions on the decompositon of metastable beta-phase titanium alloys. Metallurgical Transactions, 1971. 2(2): p. 477-484. [Google Scholar]
  35. Lütjering, G. and J.C. Williams, Special Properties and Applications of Titanium. Titanium, 2007: p. 383-415. [Google Scholar]
  36. Sun, F., et al., The role of stress induced martensite in ductile metastable Beta Ti-alloys showing combined TRIP/TWIP effects. Materials Today: Proceedings, 2015. 2: p. S505-S510. [Google Scholar]
  37. Zhang, J., et al., Microstructural evolution of a ductile metastable β titanium alloy with combined TRIP/TWIP effects. Journal of Alloys and Compounds, 2017. 699: p. 775-782. [Google Scholar]
  38. Greeff, C., D. Trinkle, and R. Albers, Shock-induced α–ω transition in titanium. Journal of Applied Physics, 2001. 90(5): p. 2221-2226. [Google Scholar]
  39. Cheng, Z., et al., Extra strengthening and work hardening in gradient nanotwinned metals. Science, 2018. 362(6414): p. eaau1925. [Google Scholar]
  40. Nag, S., R. Banerjee, and H. Fraser, Microstructural evolution and strengthening mechanisms in Ti–Nb–Zr–Ta, Ti–Mo–Zr–Fe and Ti–15Mo biocompatible alloys. Materials Science and Engineering: C, 2005. 25(3): p. 357-362. [Google Scholar]
  41. Spurling, R., A., Rhodes, C., G., and Williams, J., C., Metall. Trans. 5 (1974) 2597-2600. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.