Open Access
Issue
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
Article Number 11090
Number of page(s) 10
Section Microstructure - Properties Relationships
DOI https://doi.org/10.1051/matecconf/202032111090
Published online 12 October 2020
  1. Chini, M.R, et al. “Advanced Microtexture Analysis of a Ti 10‐2‐3 Product for Better Understanding of Local Variations in Mechanical Behavior.” Proceedings of the 13th World Conference on Titanium. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. [Google Scholar]
  2. Uta, E., et al. “Texture heterogeneities in αp/αs titanium forging analysed by EBSD‐Relation to fatigue crack propagation.” Journal of microscopy 233.3 (2009): 451-459. [CrossRef] [Google Scholar]
  3. Gey, N., et al. “Texture and microtexture variations in a near-α titanium forged disk of bimodal microstructure.” Acta Materialia 60.6-7 (2012): 2647-2655. [Google Scholar]
  4. Settefrati, A, et al. “Precipitation in a near beta titanium alloy on ageing: Influence of heating rate and chemical composition of the beta-metastable phase.” Solid State Phenomena. Vol. 172. Trans Tech Publications, 2011. [Google Scholar]
  5. Lhadi, S, et al. “Micromechanical modeling of the effect of elastic and plastic anisotropies on the mechanical behavior of β-Ti alloys.” International Journal of Plasticity 109 (2018): 88-107. [CrossRef] [Google Scholar]
  6. Hounkpati, V, et al. “In situ neutron measurements and modelling of the intergranular strains in the near-β titanium alloy Ti- β21S.” Acta Materialia 109 (2016): 341-352. [CrossRef] [Google Scholar]
  7. Hémery, S., and P. Villechaise. “Influence of β anisotropy on deformation processes operating in Ti-5Al-5Mo-5V-3Cr at room temperature.” Acta Materialia 141 (2017): 285-293. [CrossRef] [Google Scholar]
  8. Bridier, F., P. Villechaise, and J. Mendez. “Slip and fatigue crack formation processes in an α/β titanium alloy in relation to crystallographic texture on different scales.” Acta Materialia 56.15 (2008): 3951-3962. [CrossRef] [Google Scholar]
  9. Inal, K., J.L. Lebrun, and M. Belassel. “Second-order stresses and strains in heterogeneous steels: Self-consistent modeling and X-ray diffraction analysis.” Metallurgical and materials transactions A 35.8 (2004): 2361-2369. [CrossRef] [Google Scholar]
  10. Raghunathan, S.L., et al. “Micromechanics of Ti–10V–2Fe–3Al: In situ synchrotron characterisation and modelling.” Acta Materialia 55.20 (2007): 6861-6872. [CrossRef] [Google Scholar]
  11. Stapleton, Adam M., et al. “Evolution of latice strain in Ti–6Al–4V during tensile loading at room temperature.” Acta Materialia 56.20 (2008): 6186-6196. [CrossRef] [Google Scholar]
  12. Cho, J.R., et al. “Intergranular strain accumulation in a near-alpha titanium alloy during plastic deformation.” Acta materialia 50.19 (2002): 4847-4864. [Google Scholar]
  13. Gloaguen, D, et al. “Intergranular strain evolution in titanium during tensile loading: neutron diffraction and polycrystalline model.” Metallurgical and Materials Transactions A 46.11 (2015): 5038-5046. [Google Scholar]
  14. Lhadi S., Richeton T., Berbenni S., Perroud O. Germain L., Gey N., Impact of the microstructure on the mechanical behavior of Ti-10-2-3 alloy: experiments and micromechanical modeling. In preparation (2019). [Google Scholar]
  15. Lhadi, S, et al. “Micromechanical Modeling of the Elasto-Viscoplastic Behavior and Incompatibility Stresses of β-Ti Alloys.” Materials 11.7 (2018): 1227. [Google Scholar]
  16. Méric, L, Philippe P. and Cailletaud G. “Single crystal modeling for structural calculations: part 1—model presentation.” Journal of Engineering Materials and Technology 113.1 (1991): 162-170. [Google Scholar]
  17. Mareau, C., Berbenni, S. “An affine formulation for the self-consistent modeling of elasto-viscoplastic heterogeneous materials based on the translated field method.” International Journal of Plasticity 64 (2015): 134-150. [Google Scholar]
  18. Hearmon, R.F. S. “The elastic constants of crystals and other anisotropic materials.” Landolt-Bornstein Tables, III/18 (1984): 1154. [Google Scholar]
  19. Martin, G., Naze, L., Cailletaud, G. “Numerical multi-scale simulations of the mechanical behavior of β-metastable titanium alloys Ti5553 and Ti17.” Procedia Engineering 10 (2011): 1803-1808. [Google Scholar]
  20. Duval, Thimothée. Analyse multi-échelles des relations microstructure/propriétés mécaniques sous sollicitation monotone et cyclique des alliages de titane β-métastable. Diss. ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et d’Aérotechique-Poitiers, 2013. [Google Scholar]
  21. Van Swygenhoven, H, and Van Petegem S. “In-situ mechanical testing during X-ray diffraction.” Materials Characterization 78 (2013): 47-59. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.