Open Access
Issue
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
Article Number 11079
Number of page(s) 7
Section Microstructure - Properties Relationships
DOI https://doi.org/10.1051/matecconf/202032111079
Published online 12 October 2020
  1. C. Leyens, M. Peters (eds): Titanium and Titanium Alloys. Wiley-VCH GmbH & Co. KGaA, Weinheim 2003. [CrossRef] [Google Scholar]
  2. G. Lütjering, J.C. Williams: Titanium. Springer, Berlin Heidelberg 2007 [Google Scholar]
  3. R.R. Boyer, R.D. Briggs: The use of β titanium alloys in the aerospace industry. Journal of Materials Engineering and Performance 14 (2005) 681-685. [Google Scholar]
  4. A.M. Khorasani et al.: Titanium in biomedical applications - properties and fabrication: a review. Journal of Biomaterials and Tissue Engineering 5 (2015) 593-619. [Google Scholar]
  5. J.S. Hewitt et al.: Titanium alloy developments for aeroengine fan systems. Materials Science and Technology 30 (2014) 1919-1925. [Google Scholar]
  6. T. Goswami: Low cycle fatigue – dwell effects and damage mechanisms. International Journal of Fatigue 21 (1999) 55-76. [Google Scholar]
  7. M.F. Savage, T. Neeraj, M.J. Mills: Observations of room-temperature creep recovery in titanium alloys. Metallurgical and Materials Transactions 33A (2002) 891-898. [Google Scholar]
  8. J. Peng et al.: The temperature and stress dependent primary creep of CP-Ti at low and intermediate temperature. Materials Science & Engineering A 611 (2014) 123-135. [Google Scholar]
  9. W.J. Harrison, M.T. Whittaker, R.J. Lancaster: A model for time dependent strain accumulation and damage at low temperatures in Ti-6Al-4V. Materials Science & Engineering A 574 (2013) 130-136. [Google Scholar]
  10. P. Lefranc et al.: Nucleation of cracks from shear-induced cavities in an α/β titanium alloy in fatigue, room-temperature creep and dwell-fatigue. Acta Materialia 56 (2008) 4450-4457. [Google Scholar]
  11. M.R. Bache et al.: Crack growth in the creep-fatigue regime under constrained loading of thin sheet combustor alloys. International Journal of Fatigue 42 (2012) 82-87. [Google Scholar]
  12. J. Kumar, S.G.S. Raman, V. Kumar: Creep-fatigue interactions in Ti-6Al-4V alloy at ambient temperature. Trans Indian Inst Met 69 (2016) 349-352. [Google Scholar]
  13. M.R. Bache: A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, texture and operating conditions. International Journal of Fatigue 25(2003) 1079-1087. [CrossRef] [Google Scholar]
  14. W. Shen, A.B.O. Soboyejo, W.O. Soboyejo: Microstructural effects on fatigue and dwell fatigue crack growth in α/β Ti-6Al-2Sn-4Zr-2Mo-0.1Si. Metallurgical and Materials Transactions 35A (2004) 163-187. [CrossRef] [Google Scholar]
  15. W.J. Evans: Time dependent effects in fatigue of titanium and nickel alloys. Fatigue Fract. Engng Mater. Struct. 27 (2004) 543-557. [CrossRef] [Google Scholar]
  16. F.P.E. Dunne, D. Rugg: On the mechanisms of fatigue facet nucleation in titanium alloys. Fatigue Fract. Engng Mater. Struct. 31 (2008) 949-958. [CrossRef] [Google Scholar]
  17. S. Ankem et al.: Mechanical properties of alloys consisting of two ductile phases. Progress in Materials Science 51 (2006) 632 709. [Google Scholar]
  18. G. Lütjering: Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Materials Science & Engineering A 243 (1998) 32-45. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.