Open Access
Issue
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
Article Number 11045
Number of page(s) 7
Section Microstructure - Properties Relationships
DOI https://doi.org/10.1051/matecconf/202032111045
Published online 12 October 2020
  1. S. Naka, A. Lasalmonie, P. Costa, L.P. Kubin. The low-temperature plastic deformation of alpha-titaniium and the core structure of a-type screw discloations. Philos. Mag. A 57 (1987) 717-740. [Google Scholar]
  2. S. Naka, L.P. Kubin, C. Perrier. The plasticity of titanium at low and medium temperatures. Philos. Mag. A 63 (1991) 1035-1043 [Google Scholar]
  3. S. Farenc, D. Caillard, A. Coure. An in situ study of prismatic glide in α titanium at low temperatures. Acta Metall. Mater. 41, 2701-2709 (1993). [CrossRef] [Google Scholar]
  4. D.R. Chichili, K.T. Ramesh, K.J. Hemker. The high-strain-rate response of α-titanium: Experiments, deformation mechanisms and modeling. Acta Mater. 46, 1025-1043 (1998). [CrossRef] [Google Scholar]
  5. P. Castany, F. Pettinari-Sturmel, J. Crestou, J. Douin, A. Coujou. Experimental study of dislocation mobility in a Ti - 6Al - 4V alloy. Acta Mater. 55, 6284-6291 (2007). [CrossRef] [Google Scholar]
  6. J.C. Williams, R.G. Baggerly, N.E. Paton. Deformation behavior of HCP Ti-Al alloy single crystals. Metall. Mater. Trans. A 33, 837-850 (2002). [CrossRef] [Google Scholar]
  7. T Wang, B. Li, M. Li, Y. Li, Z. Wang, Z. Nie. Effects of strain rates on deformation twinning behavior in α-titanium. Mater. Charact. 106, 218-225 (2015). [CrossRef] [Google Scholar]
  8. P. Castany, F. Pettinari-Sturmel, J. Douin, A. Coujou. In situ transmission electron microscopy deformation of the titanium alloy Ti - 6Al - 4V : Interface behaviour. Mater. Sci. Eng. 484, 719-722 (2008). [CrossRef] [Google Scholar]
  9. M.F. Savage, J. Tatalovich, M.J. Mills. Anisotropy in the room-temperature deformation of α - β colonies in titanium alloys: role of the α - β interface. Philos. Mag. 84, 1127-1154 (2003). [CrossRef] [Google Scholar]
  10. M.F. Savage, J. Tatalovich, M. Zupan, K.J. Hemker, M.J. Mills. Deformation mechanisms and microtensile behavior of single colony Ti-6242Si. Mater. Sci. Eng. A 319-321, 398-403 (2001). [CrossRef] [Google Scholar]
  11. S. Suri, G.B. Viswanathan, T. Neeraj, D.H. Hou, M.J. Mills. Room temperature deformation and mechanisms of slip transmission in oriented single-colony crystals of an α /β titanium alloy. Acta Mater. 47, 1019-1034 (1999). [CrossRef] [Google Scholar]
  12. Steven James, Yoji Kosaka, Roger Thomas. Timetal407: A Titanium Alloy to Enable Cost Reduction. Proc. 13th World Conf. Titan. (2016). [Google Scholar]
  13. R. Ding, J. Gong, A. Wilkinson, I.P. Jones. Dislocations in deformed Ti-6Al-4V micro-cantilevers. Acta Mater. 76, 127-134 (2014). [CrossRef] [Google Scholar]
  14. I.P. Jones, W.B. Hutchinson. Stress-state dependence of slip in Titanium-6Al-4V and other H.C.P. metals. Acta Metall. 29, 951-968 (1981). [CrossRef] [Google Scholar]
  15. H. Numakura, Y. Minonishi, M. Koiwa. <-1-123>{10-11} Slip in Titanium Polycrystals at Room Temperature. Scripta Mater. 20, 1581-1586 (1986). [CrossRef] [Google Scholar]
  16. T. Sakai, M.E. Fine. Failure of Schmid’s law in Ti-Al alloys for prismatic slip. Scripta Metall. 8, 541-544 (1974). [CrossRef] [Google Scholar]
  17. M. Poschmann, M. Asta, D.C Chrzan. Effect of non-Schmid stresses on -type screw dislocation core structure and mobility in titanium. Comput. Mater. Sci. 161, 261-264 (2019). [CrossRef] [Google Scholar]
  18. Thomas R. Cass. Slip Modes and Dislocation Substructures in Titanium and Titanium-Aluminum Single Crystals. Sci. Technol. Appl. Titan. (1970). [Google Scholar]
  19. S.G. Song, G.T. Gray. Structural interpretation of the nucleation and growth of deformation twins in Zr and Ti. Application of the coincidence site lattice (CSL) theory to twinning problems in h.c.p. structures. Acta Metall. Mater. 43, 2325-2337 (1995). [CrossRef] [Google Scholar]
  20. M.S. Hooshmand, M.J. Mills, M. Ghazisaeidi. Atomistic modeling of dislocation interactions with twin boundaries in Ti. Model. Simul. Mater. Sci. Eng. 25, 45003 (2017). [CrossRef] [Google Scholar]
  21. M. Zakaria, X. Wu. Response of titanium alloys to high strain rate deformation. Mater. Sci. Technol. 21, 225-231 (2005). [CrossRef] [Google Scholar]
  22. G.T. Gray, P.S. Follansbee. Influence of Strain Rate on the Substructure Evolution of Ti-64. Los Alamos National Lab (1988). [Google Scholar]
  23. George T. Gray III. Influence of strain rate and temperature on the structure/property behavior of high-purity titanium. Eurodymat (1997). [Google Scholar]
  24. L. Wang, Y. Wang, P. Eisenlohr, T.R. Bieler, M.A. Crimp, D.E Mason. Twin nucleation by slip transfer across grain boundaries in commercial purity titanium. Metall. Mater. Trans. A. 41, 421-430 (2010). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.