Open Access
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
Article Number 11040
Number of page(s) 6
Section Microstructure - Properties Relationships
Published online 12 October 2020
  1. R.R. Boyer, An overview on the use of titanium in the aerospace industry, Mat Sci Eng a-Struct 213(1-2) (1996) 103-114. [Google Scholar]
  2. G. Lütjering, J.C. Williams, Titanium, Springer Science & Business Media 2007. [Google Scholar]
  3. M.D. Sangid, The physics of fatigue crack initiation, International Journal of Fatigue 57 (2013) 58-72. [Google Scholar]
  4. H. Mughrabi, Cyclic slip irreversibility and fatigue life: A microstructure-based analysis, Acta Materialia 61(4) (2013) 1197-1203. [Google Scholar]
  5. S. Suresh, R.O. Ritchie, Propagation of short fatigue cracks, International Materials Reviews 29(1) (1984) 445-475. [Google Scholar]
  6. S. Birosca, J.Y. Buffiere, M. Karadge, M. Preuss, 3-D observations of short fatigue crack interaction with la2mellar and duplex microstructures in a two-phase titanium alloy, Acta Materialia 59(4) (2011) 1510-1522. [CrossRef] [Google Scholar]
  7. F. Bridier, P. Villechaise, J. Mendez, Slip and fatigue crack formation processes in an α/β titanium alloy in relation to crystallographic texture on different scales, Acta Materialia 56(15) (2008) 3951-3962. [Google Scholar]
  8. G.J. Baxter, Fatigue damage accumulation in titanium alloy IMI 834, University of Sheffield, 1994. [Google Scholar]
  9. M. Legros, A. Corn, D. Caillard, Prismatic and basal slip in Ti3Al I. Frictional forces on dislocations, Philosophical Magazine A 73(1) (1996) 61-80. [Google Scholar]
  10. C. Huang, Y. Zhao, S. Xin, W. Zhou, Q. Li, W. Zeng, C. Tan, High cycle fatigue behavior of Ti–5Al–5Mo–5V–3Cr–1Zr titanium alloy with bimodal microstructure, Journal of Alloys and Compounds 695 (2017) 1966-1975. [Google Scholar]
  11. C.J. Szczepanski, S.K. Jha, J.M. Larsen, J.W. Jones, Microstructural Influences on Very-High-Cycle Fatigue-Crack Initiation in Ti-6246, Metallurgical and Materials Transactions A 39(12) (2008) 2841-2851. [Google Scholar]
  12. G. Lütjering, Influence of processing on microstructure and mechanical properties of (α+ β) titanium alloys, Materials Science and Engineering: A 243(1-2) (1998) 32-45. [Google Scholar]
  13. W.D. Callister, D.G. Rethwisch, Materials science and engineering, John Wiley & Sons NY2011. [Google Scholar]
  14. J. Williams, R. Baggerly, N. Paton, Deformation behavior of HCP Ti-Al alloy single crystals, Metallurgical and Materials Transactions A 33(3) (2002) 837-850. [Google Scholar]
  15. J. Hall, Fatigue crack initiation in alpha-beta titanium alloys, International journal of fatigue 19(93) (1997) 23-37. [Google Scholar]
  16. K.S. Chan, Y.D. Lee, Effects of Deformation-Induced Constraint on High-Cycle Fatigue in Ti Alloys with a Duplex Microstructure, Metallurgical and Materials Transactions A 39(7) (2008) 1665-1675. [Google Scholar]
  17. M. Bache, A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, texture and operating conditions, International Journal of Fatigue 25(9-11) (2003) 1079-1087. [Google Scholar]
  18. M. Bache, M. Cope, H. Davies, W. Evans, G. Harrison, Dwell sensitive fatigue in a near alpha titanium alloy at ambient temperature, International journal of fatigue 19(93) (1997) 83-88. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.