Open Access
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
Article Number 11031
Number of page(s) 4
Section Microstructure - Properties Relationships
Published online 12 October 2020
  1. Peters, M., & Leyens, C. (2003). Titanium and Titanium Alloys. [Google Scholar]
  2. Flower, H. M. (1990). Microstructural development in relation to hot working of titanium alloys. Materials Science and Technology. [Google Scholar]
  3. Lutjering, G. (1998). Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Materials Science and Engineering A, 243 (1-2), 32-45 [CrossRef] [Google Scholar]
  4. Bache, M. R. (2003). A review of dwell sensitive fatigue in titanium alloys: The role of microstructure, texture and operating conditions. International Journal of Fatigue, 25 (9-11), 1079-1087. [Google Scholar]
  5. Le Biavant K., Pommier S., Prioul, C.: Local texture and fatigue crack initiation in a Ti-6Al-4V titanium alloy, Fatigue and Fracture of Engineering Materials and Structures, 2002, 25 (6), 527-545. [CrossRef] [Google Scholar]
  6. Bache M., Cope M., Davies H., Evans W., Harrison, G.: Dwell sensitive fatigue in a near alpha titanium alloy at ambient temperature, International Journal of Fatigue, 1997, 19 (93), 83-88. [CrossRef] [Google Scholar]
  7. Wanjara, P., Jahazi, M., Monajati, H., Yue, S., & Immarigeon, J. P. (2005). Hot working behavior of near-α alloy IMI834. Materials Science and Engineering A. [Google Scholar]
  8. Sinha, V., Spowart, J. E., Mills, M. J., & Williams, J. C. (2006). Observations on the faceted initiation site in the dwell-fatigue tested Ti-6242 alloy: Crystallographic orientation and size effects. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 37 (5), 1507-1518. [Google Scholar]
  9. Pilchak, A. L., & Williams, J. C. (2011). Observations of facet formation in near-α titanium and comments on the role of hydrogen. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 42 (4), 1000-1027. [CrossRef] [Google Scholar]
  10. Zhang, K., Yang, K. V., Lim, S., Wu, X., & Davies, C. H. J. (2017). Effect of the presence of macrozones on short crack propagation in forged two-phase titanium alloys. International Journal of Fatigue, 104, 1-11. [CrossRef] [Google Scholar]
  11. Gey, N., Bocher, P., Uta, E., Germain, L., & Humbert, M. (2012). Texture and microtexture variations in a near-α titanium forged disk of bimodal microstructure. Acta Materialia. [Google Scholar]
  12. Pilchak, A. L., Szczepanski, C. J., Shaffer, J. A., Salem, A. A., & Semiatin, S. L. (2013). Characterization of microstructure, texture, and microtexture in near-alpha titanium mill products. In Metallurgical and Materials Transactions, A: Physical Metallurgy and Materials Science. [Google Scholar]
  13. Wilson A.F., Venkatesh, V., Pather, R., Brooks J.W., Fox S.P. The prediction of microstructural development during TIMETAL 64 billet manufacture. In Proceedings of the 10th world conference on titanium, Hamburg; 2003. p. 322. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.