Open Access
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
Article Number 05012
Number of page(s) 4
Section Biomedical and Healthcare Applications
Published online 12 October 2020
  1. C. Gomes et al., “Assessment of the genetic risks of a metallic alloy used in medical implants,” Genet. Mol. Biol., vol. 34, no. 1, pp. 116-121, 2011. [CrossRef] [Google Scholar]
  2. A. Langley and C. Dameron, “Modern Metal Implant Toxicity and Anaesthesia.,” Australas. Anaesth., pp. 57-65, 2015. [Google Scholar]
  3. L. Tomljenovic, “Aluminum and Alzheimer’s disease: After a century of controversy, is there a plausible link?,” J. Alzheimer’s Dis., vol. 23, no. 4, pp. 567-598, 2011. [CrossRef] [PubMed] [Google Scholar]
  4. S. Steinemann, “Corrosion of surgical implants - In vivo and in vitro tests,” Adv. Biomater., vol. 1, 1980. [Google Scholar]
  5. K.C. Hari Kumar, P. Wollants, and L. Delacy, “Thermodynamic assessment of the TiZr system and calculation of the NbTiZr phase diagram,” J. Alloys Compd., vol. 206, no. 1, pp. 121-127, 1994. [CrossRef] [Google Scholar]
  6. D.R.N. Correa, F.B. Vicente, T.A.G. Donato, V.E. Arana-Chavez, M.A.R. Buzalaf, and C.R. Grandini, “The effect of the solute on the structure, selected mechanical properties, and biocompatibility of Ti-Zr system alloys for dental applications,” Mater. Sci. Eng. C, vol. 34, no. 1, pp. 354-359, 2014. [CrossRef] [Google Scholar]
  7. R.I. Jaffee and I.E. Campbell, “The Effect of Oxygen, Nitrogen, and Hydrogen on Iodide Refined Titanium,” Met. Trans., vol. 185, no. September, pp. 646-654, 1949. [Google Scholar]
  8. R.I. Jaffee, H.R. Ogden, and D.J. Maykuth, “Alloys of titanium with carbon, oxygen, and nitrogen,” Trans. AIME - J. Met., vol. 188, pp. 1261-1266, 1950. [Google Scholar]
  9. W.L. Finlay and J.A. Snyder, “Effects of three interstitial solutes (nitrogen, oxygen, and carbon) on the mechanical properties of high-purity, alpha titanium,” Trans. AIME - J. Met., vol. 188, pp. 277-286, 1950. [Google Scholar]
  10. H. Conrad, “Effect of interstitial solutes on the strength and ductility of titanium,” Prog. Mater. Sci., vol. 26, pp. 123-403, 1981. [CrossRef] [Google Scholar]
  11. F. Geng, M. Niinomi, and M. Nakai, “Observation of yielding and strain hardening in a titanium alloy having high oxygen content,” Mater. Sci. Eng. A, vol. 528, no. 16-17, pp. 5435-5445, 2011. [CrossRef] [Google Scholar]
  12. B. Sun, S. Li, H. Imai, T. Mimoto, J. Umeda, and K. Kondoh, “Fabrication of high-strength Ti materials by in-process solid solution strengthening of oxygen via P/M methods,” Mater. Sci. Eng. A, vol. 563, pp. 95-100, 2013. [CrossRef] [Google Scholar]
  13. D.S. Kang, K.J. Lee, E.P. Kwon, T. Tsuchiyama, and S. Takaki, “Variation of work hardening rate by oxygen contents in pure titanium alloy,” Mater. Sci. Eng. A, vol. 632, pp. 120-126, 2015. [CrossRef] [Google Scholar]
  14. F. Larson and A. Zarkades, Properties of Textured Titanium Alloys, no. June. 1974. [CrossRef] [Google Scholar]
  15. Y. Matayashi and T. Homma, “Effect of Zr addition on recrystallization behavior in rolled Ti-Zr alloys,” in TMS Annual Meeting, 2015, pp. 981-988. [Google Scholar]
  16. B.J.L. Murray and H.A. Wriedt, “The O-Ti ( Oxygen-Titanium ) System,” Bull. Alloy Phase Diagrams, vol. 8, no. 2, pp. 148-149, 1987. [CrossRef] [Google Scholar]
  17. I.I. Kornilov, “Effect of oxygen on titanium and its alloys,” Metalloved. i Termicheskaya Obrab. Met., no. 10, pp. 826-829, 1973. [Google Scholar]
  18. A.E. Medvedev et al., “Microstructure and mechanical properties of Ti-15Zr alloy used as dental implant material,” J. Mech. Behav. Biomed. Mater., vol. 62, pp. 384-398, 2016. [CrossRef] [Google Scholar]
  19. K. Nakasuji and M. Okada, “New high strength titanium alloy Ti-10%Zr for spectacle frames,” Mater. Sci. Eng. A, vol. 213, no. 1-2, pp. 162-165, 1996. [CrossRef] [Google Scholar]
  20. A. Kuroda, N. K., and Y. Imamura, “New developed Ti-10Zr Alloy for Consumer Goods Application,” The Sumitomo Search, no. 60, pp. 34-38, 1998. [Google Scholar]
  21. J.C. Williams, P.P. Tung, and A.W. Sommer, “Influence of Oxygen Concentration on Internal Stress and Dislocation Arrangements in Alpha Titanium,” Metall. Trans., vol. 3, pp. 2979-2984, 1972. [CrossRef] [Google Scholar]
  22. B. Barkia, J.P. Couzinié, S. Lartigue-Korinek, I. Guillot, and V. Doquet, “In situ TEM observations of dislocation dynamics in α titanium: Effect of the oxygen content,” Mater. Sci. Eng. A, vol. 703, no. July, pp. 331-339, 2017. [CrossRef] [Google Scholar]
  23. S. Delannoy and F. Prima, “Ternary Ti-Zr-O Alloys, methods for producing same and associated utilizations thereof,” EP 17202971, 2017. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.