Open Access
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
Article Number 05010
Number of page(s) 12
Section Biomedical and Healthcare Applications
Published online 12 October 2020
  1. Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, J Mater Sci 41 (2006) 763-777 [CrossRef] [Google Scholar]
  2. O. Guillon, J. Gonzalez‐Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, M. Herrmann, Field‐Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments, Adv Eng Mater 16 (2014) 830-849 [Google Scholar]
  3. T. Voisin, J. Monchoux, L. Durand, N. Karnatak, M. Thomas, A. Couret, An Innovative Way to Produce γ‐TiAl Blades: Spark Plasma Sintering. Adv Eng Mater 17 (2015) 1408-1413. [CrossRef] [Google Scholar]
  4. Z.Z. Fang et al., ‘Powder metallurgy of titanium – past, present, and future’, Int. Mater. Rev. 63 (2018) 407-459 [CrossRef] [Google Scholar]
  5. J. Kozlík, P. Harcuba, J. Stráský, H. Becker, J. Šmilauerová, M. Janeček, Microstructure and texture formation in commercially pure titanium prepared by cryogenic milling and spark plasma sintering, Mater. Char. 151 (2019) 1-5 [Google Scholar]
  6. B. Sharma, S.K. Vajpai, and K. Ameyama, ‘Microstructure and properties of beta Ti–Nb alloy prepared by powder metallurgy route using titanium hydride powder’, J. Alloys Compd., vol. C, no. 656, pp. 978-986, 2016. [CrossRef] [Google Scholar]
  7. X. Lu, B. Sun, T. Zhao, L. Wang, C. Liu, and X. Qu, ‘Microstructure and mechanical properties of spark plasma sintered Ti-Mo alloys for dental applications’, Int. J. Miner. Metall. Mater., vol. 21, no. 5, pp. 479-486, May 2014. [CrossRef] [Google Scholar]
  8. W. Chen, ‘Interdiffusion and atomic mobility in bcc Ti–rich Ti–Nb–Zr system’, Calphad, vol. 60, pp. 98-105, Mar. 2018. [CrossRef] [Google Scholar]
  9. J. Stráský, P. Harcuba, K. Václavová, K. Horváth, M. Landa, O. Srba, M. Janeček, Increasing strength of a biomedical Ti-Nb-Ta-Zr alloy by alloying with Fe, Si and O.J. Mech. Behav. Biomed. Mater. 71 (2017) 329-36 [Google Scholar]
  10. E. Eisenbarth, D. Velten, M. Müller, R. Thull, J. Breme, Biocompatibility of β-stabilizing elements of titanium alloys Biomaterials 25 (2004) 5705-13 [Google Scholar]
  11. I. Kopova, J. Stráský, P. Harcuba, M. Landa, M. Janeček, L. Bačákova, Newly developed Ti–Nb–Zr–Ta–Si–Fe biomedical beta titanium alloys with increased strength and enhanced biocompatibility. Mater. Sci. Eng. C 60 (2016) 230-8 [CrossRef] [Google Scholar]
  12. M. Tane, T. Nakano, S. Kuramoto, M. Hara, M. Niinomi, N. Takesue, T. Yano, H. Nakajima, Low Young’s modulus in Ti–Nb–Ta–Zr–O alloys: Cold working and oxygen effects. Acta Mater. 59 (2011) 6975-88 [Google Scholar]
  13. T. Ahmed, H.J. Rack, Low modulus biocompatible titanium base alloys for medical devices. US Patent US5871595A (1999) [Google Scholar]
  14. F. Geng, M. Niinomi, M. Nakai, Observation of yielding and strain hardening in a titaniu.m alloy having high oxygen content. Mater. Sci. Eng. A 528 (2011) 5435-45 [Google Scholar]
  15. M. Nakai, M. Niinomi, T. Akahori, H. Tsutsumi, M. Ogawa, Effect of Oxygen Content on Microstructure and Mechanical Properties of Biomedical Ti-29Nb-13Ta-4.6Zr Alloy under Solutionized and Aged Conditions. Mater. Trans. 50 (2009) 2716-20 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.