Open Access
MATEC Web Conf.
Volume 316, 2020
2020 6th Asia Conference on Mechanical Engineering and Aerospace Engineering (MEAE 2020)
Article Number 04006
Number of page(s) 8
Section Aerospace Engineering
Published online 01 July 2020
  1. Ou C., JI H. L, Xiao H.S., et al. Key problems in structure and thermal protection for MF-1 model testing flight vehicle [J]. Acta Aerodynamica sinica, 2017, 35(5):742-749. [Google Scholar]
  2. Yang Q T, Zhou Y, Yuan X X, et al. Surface pressure and temperature measurement technology in MF-1 modelling flight test[J]. Acta Aerodynamica sinica, 2017, 35(5):732-741. [Google Scholar]
  3. He Z C, CHE J, XIAO H S, et al. Trajectory design and Monte Carlo flight simulation for MF-1[J]. Acta Aerodynamica sinica, 2019, 37(2):201-206. [Google Scholar]
  4. Shehret Tilvaldyev, Erwin Martinez, Jorge FloresGaray, and Alfredo Villanueva Montellano, “Distribution of Dynamic Pressure in Micro-Scale of Subsonic Airflow around Symmetric Objects at Zero Angle of Attack, ” International Journal of Mechanical Engineering and Robotics Research, Vol. 6, No. 3, pp. 226-231, May 2017. DOI: 10.18178/ijmerr.6.3.226-231. [CrossRef] [Google Scholar]
  5. Yury I. Dimitrienko, Mikhail N. Koryakov, and Andrey A. Zakharov, “Computational Simulation of Conjugated Problem of External Aerodynamics and Internal Heat and Mass Transfer in High-Speed Aircraft Composite Construct, ” International Journal of Mechanical Engineering and Robotics Research, Vol. 6, No. 1, pp. 58-64, January 2017. DOI: 10.18178/ijmerr.6.1.58-64 [CrossRef] [Google Scholar]
  6. Kimmel, R. L. Aerothermal Design for the HIFiRE-1 flight Vehicle[C]. AIAA 2008-4034, June 2008. [Google Scholar]
  7. Adamczak, D., Alesi, H., Frost, M. HIFiRE-1: Payload Design, Manufacture, Ground Test, and Lessons Learned[C]. AIAA paper 2009-7294, October 2009. [Google Scholar]
  8. Roger L. Kimmel, David Adamczak. Hifire-1 Background and Lessons Learned[C]. AIAA paper 2012-1088, January 2012. [Google Scholar]
  9. Schneider, S. P. Flight Data for Boundary-Layer Transition at Hypersonic and Supersonic Speeds[J]. Journal of Spacecraft and Rockets, vol. 36, no. 1, January-February 1999. [CrossRef] [Google Scholar]
  10. Stetson, K. F. Nosetip Bluntntess Effects on Cone Frustum Boundary Layer Transition in Hypersonic Flow[C]. AIAA paper 83-1763, July 1983. [Google Scholar]
  11. Kimmel, R. L., Adamczak, D., Gaitonde, D., Rougeux, A., Hayes, J. R., HIFiRE-1 Boundary Layer Transition Experiment Design[C]. AIAA paper 2007-0534, January 2007. [Google Scholar]
  12. Johnson, H. B., Alba, C. R., Candler, G. V., MacLean, M., Wadhams, T, and Holden, M. Boundary Layer Stability Analysis of the Hypersonic International Flight Research Transition Experiments[C]. AIAA Journal of Spacecraft and Rockets, vol. 45, no. 2, March-April 2008. [Google Scholar]
  13. Stainback, C. P. Effect of Unit Reynolds Number, NoseBluntness, Angle of Attack, and Roughness on Transition on a 5°Half -Angle Cone at Mach 8[C]. NASA TN D-4961, January 1969. [Google Scholar]
  14. Liu CHU-ping, Yang Qing-tao, et al. Heatflux measurement in aerothermodynamics and thermal protection tests [M]. Beijing: National Defense Industry Press, 2013. [Google Scholar]
  15. Zhang Shou-yan, Hui Yu-xin, et al. Modeling Free flight [M]. Beijing: National Defense Industry Press, 2002. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.