Open Access
Issue
MATEC Web Conf.
Volume 313, 2020
Dynamics of Civil Engineering and Transport Structures and Wind Engineering – DYN-WIND’2020
Article Number 00024
Number of page(s) 9
DOI https://doi.org/10.1051/matecconf/202031300024
Published online 16 April 2020
  1. C.F. Zhao, J.Y. Chen, Y. Wang, S.J. Lu, Damage mechanism and response of reinforced concrete containment structure under internal blast loading. Theor. Appl. Fract. Mec., 61, 12-20 (2012), DOI: 10.1016/j.tafmec.2012.08.002 [CrossRef] [Google Scholar]
  2. K. Fujikake, B. Li, S. Soeun, Impact Response of Reinforced Concrete Beam and Its Analytical Evaluation. J. Struct. Eng., 135, 8, 938-950 (2009), DOI: 10.1061/(ASCE)ST.1943-541X.0000039 [Google Scholar]
  3. A. Neuberger, S. Peles, D. Rittel, Scaling the response of circular plates subjected to large and close-range spherical explosions. Part I: Air-blast loading. Int. J. Impact Eng., 34, 5, 859–873, DOI: 10.1016/j.ijimpeng.2006.04.001 [Google Scholar]
  4. J. Králik, Safety of nuclear power plant against the aircraft attack. Appl. Mech. Mater., 617, 76–80, DOI:10.4028/www.scientific.net/AMM.617.76 [Google Scholar]
  5. P. Král, P. Hradil, J. Kala. Evaluation of constitutive relations for concrete modelling based on an incremental theory of elastic strain-hardening plasticity, Comput Concrete, 22, 2, 227-237 (2018), DOI: 10.12989/cac.2018.22.2.227 [Google Scholar]
  6. G.R. Johnson, T.J. Holmquist, 1992. A computational constitutive model for brittle materials subjected to large strains, high strain rates and high pressures. Shock Wave and High-Strain-Rate Phenomena in Materials, 1075–1081 edited by M.A. Meyers, L.E. Murr, and K.P. Staudhammer, New York: Marcel Dekker Inc. [Google Scholar]
  7. Y.S. Tai, T.L. Chu, H.T. Hu, J.Y. Wu. Dynamic response of a reinforced concrete slab subjected to air blast load. Theor. Appl. Fract. Mec, 56, 3, 140-147 (2011), DOI:10.1016/j.tafmec.2011.11.002 [CrossRef] [Google Scholar]
  8. C.F. Zhao, J.Y. Chen. Damage mechanism and mode of square reinforced slab subjected to blast loading. Theor. Appl. Fract. Mec, 63-64, 54-62 (2013), DOI: 10.1016/j.tafmec.2013 [CrossRef] [Google Scholar]
  9. G. Thiagarajan, A.V. Kadambi., S. Robert, C.F. Johnson. Experimental and finite element analysis of doubly reinforced concrete slabs subjected to blast loads. Int. J. Impact Eng., 75, 162-173 (2015), DOI: 10.1016/j.ijimpeng.2014.07.018 [CrossRef] [Google Scholar]
  10. G.M. Ren, H. Wu, Q. Fang, X.Z. Kong, Parameters of Holmquist-Johnson-Cook model for high-strength concrete-like materials under projectile impact. International Journal of Protective Structures, 8, 3, 253-367 (2017), DOI: 10.1177/2041419617721552 [Google Scholar]
  11. Y.B. Xiong, J.J. Chen, Y.L. Hu, W.P. Wang, Study on the key parameters of the Johnson-Holmquist constitutive model for concrete. Engineer Mechan, 29, 1. 121-127 (2012) (in Chinese) [Google Scholar]
  12. Y.B. Xiong, J.J. Chen, Y.L. Hu. Preliminary Identification of Sensitive Parameters in Johnson-Holmquist Concrete Constitutive Model. Acta Armamentarii, 30, 2, (2009) (in Chinese) [Google Scholar]
  13. V. Reddy Y. (2010). Numerical response of steel reinforced concrete slab subjected to blast and pressure loadings in LS-Dyna. University of Missouri-Kansas City. Thesis [Google Scholar]
  14. B.H. Thacker (2000). Probability Sensitivity Analysis of the Holmquist-Johnson-Cook Material Model for Concrete. Final Report, AFRL/MNAL Eglin AFB, FL, Southwest Research Institute, San Antonio, Texas [Google Scholar]
  15. Livermore Software Technology Corporation (1997), LS-DYNA Theoretical Manual. Livermore, CA: Livermore Software Technology Corporation [Google Scholar]
  16. G. Randers-Pehrson, K.A. Bannister. Airblast loading model for DYNA2D and DYNA3D. Army Research Laboratory, Rept. ARL-TR-1310, US, 1997 [Google Scholar]
  17. F.G. Friedlander. The diffraction of sound pulses I. Diffraction by a semi-infinite plane. P R Soc A. 1946, DOI: 10.1098/rspa.1946.0046 [Google Scholar]
  18. Dynardo GmbH (2018), optiSLang software documentation. Weimar, Germany [Google Scholar]
  19. P. Král, M. Hušek, P. Hradil, J. Kala, P. Maňas. Optimization of the material parameters of the continuous surface cap model for concrete, ICMT-INT CONF MILIT, 298-302 (2017), Brno, DOI: 10.1109/MILTECHS.2017.7988773 [Google Scholar]
  20. M. Hušek, J. Kala. Material structure generation of concrete and its further usage in numerical simulations. Struct Eng Mech., 68, 3, 335-344 (2018), DOI: 10.12989/sem.2018.68.3.335 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.