Open Access
Issue
MATEC Web Conf.
Volume 309, 2020
2019 International Conference on Computer Science Communication and Network Security (CSCNS2019)
Article Number 05009
Number of page(s) 8
Section Modelling and Simulation
DOI https://doi.org/10.1051/matecconf/202030905009
Published online 04 March 2020
  1. D Wang, H Shen Y Truong. Efficient dimension reduction for high-dimensional matrix- valued data [J]. Neurocomputing, 2016, 190: 25–34. [Google Scholar]
  2. Q Pan. Research on dimensionality reduction method in high dimensional longitudinal data analysis [J]. The financial times, 2017, 672(9): 19–20. [Google Scholar]
  3. W Hou. An improved method for comprehensive evaluation by principal component analysis[J]. Journal of liaoning normal university (natural science edition), 2004(04):403–406. [Google Scholar]
  4. S W Meng. The problems that should be paid attention to in multi-index evaluation by principal component analysis[J]. Statistical study, 1992(4): 86–87. [Google Scholar]
  5. J Li. Based on ARIMA model, this paper analyzes and predicts the consumption level of residents in anhui province[J]. Modern business, 2017(01): 195–196. [Google Scholar]
  6. X Q He. Multivariate statistical analysis (fourth edition) [M]. Renmin university of China press, 2015, 3: 113–127. [Google Scholar]
  7. W H Song, Q Zhang. The application of PCA algorithm in image feature reduction [J]. Journal of huangshan college, 2014, 16(05): 20–22. [Google Scholar]
  8. W H Su. Study on the theory and method of multi-index comprehensive evaluation [D]. Xiammen: xiamen university, 2000. [Google Scholar]
  9. Y J Guo. Comprehensive evaluation theory and method [M]. Beijing: science press, 2002: 111–117. [Google Scholar]
  10. G E P Box, G M Jenkins, G C Reinsel. Time Series Analysis: Forecasting and Control (Renvised Edition) [J]. Journal of Marketing Research, 1994, 14(2): 353–412. [Google Scholar]
  11. R A Fildes.The analysis of time series: Theory and practice: by C. Chatfield, Chapman and Hall, London(1975) [J]. Long Range Planning, 1976, 9(6): 113–114. [Google Scholar]
  12. Y Peng. Introduction of ARIMA model [J]. Electronics World, 2014, 10: 259. [Google Scholar]
  13. Summary of Chinese statistics 2011.http://www.yearbookchina.com/naviBooklist-YCDES-0. html, 2011. [Google Scholar]
  14. P Z Li. The application of cluster analysis and principal component analysis in regional comprehensive consumption level evaluation[C]. Nankai university, 2008(11). [Google Scholar]
  15. A E USORO, I U MOFFAT. Principal component analysis of nigeria nalue of major imports [J]. Am J Econ, 2015: 5(5): 508–512. [Google Scholar]
  16. X F pan, X X Peng. Time series analysis [M]. beijing: Tsinghua university press, 2016: 40–62. [Google Scholar]
  17. Z H Xiao, M Y Guo. Time series analysis and SAS application [M]. 2012: 44–65. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.