Open Access
MATEC Web Conf.
Volume 309, 2020
2019 International Conference on Computer Science Communication and Network Security (CSCNS2019)
Article Number 04011
Number of page(s) 9
Section System Design and Optimization
Published online 04 March 2020
  1. Ziegler-Graham K, MacKenzie E J, Ephraim P L, et al. Estimating the prevalence of limb loss in the United States: 2005 to 2050[J]. Archives of physical medicine and rehabilitation, 2008, 89(3): 422–429. [CrossRef] [Google Scholar]
  2. Amputee Coalition (2008). [Online]. Available: [Google Scholar]
  3. Stroke Center (2008). [Online]. Available: [Google Scholar]
  4. Villarreal D J, Gregg R D. A survey of phase variable candidates of human locomotion[C]//2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2014: 4017–4021. [Google Scholar]
  5. Lawson-Brian E., Goldfarb-Michael, IMPEDANCE & ADMITTANCE -BASED COORDINATION CONTROL FOR ROBOTIC LOWER LIMB, MECHANICAL ENGINEERING, vol: 136, pp: 62–67, 2014. [Google Scholar]
  6. Lawson B E, Mitchell J, Truex D, et al. A robotic leg prosthesis: Design, control, and implementation[J]. IEEE Robotics & Automation Magazine, 2014, 21(4): 70–81. [CrossRef] [Google Scholar]
  7. Simon A M, Ingraham K A, Fey N P, et al. Configuring a powered knee and ankle prosthesis for transfemoral amputees within five specific ambulation modes[J]. PloS one, 2014, 9(6): e99387. [CrossRef] [Google Scholar]
  8. Martin A E, Gregg R D. Hybrid invariance and stability of a feedback linearizing controller for powered prostheses[C]. American Control Conference (ACC). IEEE, 2015: 4670–4676. [CrossRef] [Google Scholar]
  9. Gregg R D, Martin A E. Prosthetic leg control in the nullspace of human interaction[C]//2016 American Control Conference (ACC). IEEE, 2016: 4814–4821. [CrossRef] [Google Scholar]
  10. Martin A E, Gregg R D. Stable, robust hybrid zero dynamics control of powered lower-limb prostheses[J]. IEEE transactions on automatic control, 2017, 62(8): 3930–3942. [CrossRef] [Google Scholar]
  11. Quintero D, Martin A E, Gregg R D. Unifying the gait cycle in the control of a powered prosthetic leg[C]. IEEE International Conference on Rehabilitation Robotics (ICORR). IEEE, 2015: 289–294. [Google Scholar]
  12. Villarreal D J, Gregg R D. Unified phase variables of relative degree two for human locomotion[C]. 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2016: 6262–6267. [Google Scholar]
  13. Quintero D, Lambert D J, Villarreal D J, et al. Real-time continuous gait phase and speed estimation from a single sensor[C]//2017 IEEE Conference on Control Technology and Applications (CCTA). IEEE, 2017: 847–852. [Google Scholar]
  14. Villarreal D J, Poonawala H A, Gregg R D. A robust parameterization of human gait patterns across phase-shifting perturbations[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 25(3): 265–278. [CrossRef] [Google Scholar]
  15. Quintero D, Villarreal D J, Lambert D J, et al. Continuous-phase control of a powered knee-ankle prosthesis: Amputee experiments across speeds and inclines[J]. IEEE Transactions on Robotics, 2018, 34(3): 686–701. [CrossRef] [Google Scholar]
  16. Quintero D, Reznick E, Lambert D J, et al. Intuitive Clinician Control Interface for a Powered Knee-Ankle Prosthesis: A Case Study [J]. IEEE journal of translational engineering in health and medicine, 2018, 6: 1–9. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.