Open Access
Issue
MATEC Web Conf.
Volume 307, 2020
International Conference on Materials & Energy (ICOME’17 and ICOME’18)
Article Number 01054
Number of page(s) 5
DOI https://doi.org/10.1051/matecconf/202030701054
Published online 10 February 2020
  1. Aramendia, I.; Fernandez-Gamiz, U.; Ramos-Hernanz, J.; Sancho, J.; Lopez-Guede, J.; Zulueta, E. Flow Control Devices for Wind Turbines. In Energy Harvesting and Energy Efficiency: Technology, Methods, and Applications; Bizon, N.; Mahdavi Tabatabaei, N.; Blaabjerg, F.; Kurt, E., Eds.; Springer International Publishing: Cham, (2017); pp. 629-655. [CrossRef] [Google Scholar]
  2. Aramendia-Iradi, I.; Fernandez-Gamiz, U.; Sancho-Saiz, J.; Zulueta-Guerrero, E. State of the art of active and passive flow control devices for wind turbines. Dyna (2016), 91, 512-516, DOI 10.6036/7807. [CrossRef] [Google Scholar]
  3. Øye, S. The ELKRAFT 1 MW Wind Turbine: Results from the Test Program. European Union Wind Energy Conference - Göteborg, Sweden (1996), 251-255. [Google Scholar]
  4. Sullivan, T.L. Effect of vortex generators on the power conversion performance and structural dynamic loads of the Mod-2 wind turbine. (1984), NASA-TM-83680, E-2131, DOE/NASA/20320-59, NAS 1.15:83680. [Google Scholar]
  5. Fernandez-Gamiz, U.; Zulueta, E.; Boyano, A.; Ansoategui, I.; Uriarte, I. Five Megawatt Wind Turbine Power Output Improvements by Passive Flow Control Devices. Energies (2017), 10, DOI 10.3390/en10060742. [Google Scholar]
  6. Atluri, S.; Rao, V.K.; Dalton, C. A numerical investigation of the near-wake structure in the variable frequency forced oscillation of a circular cylinder. Journal of Fluids and Structures (2009), 25, 229-244, DOI https://doi.org/10.1016/j.jfluidstructs.2008.06.012. [CrossRef] [Google Scholar]
  7. Velte, C.M.; Hansen, M.O.L.; Okulov, V.L. Helical structure of longitudinal vortices embedded in turbulent wall-bounded flow. J Fluid Mech (2009), 619, 167-177, DOI 10.1017/S0022112008004588. Available online: http://dx.doi.org/10.1017/S0022112008004588. [CrossRef] [Google Scholar]
  8. Velte, C.M. Vortex generator flow model based on self-similarity. AIAA J (2012), 51, 526-529, DOI 10.2514/1.J051865. [CrossRef] [Google Scholar]
  9. Lin, J. Review of research on low-profile vortex generators to control boundary-layer separation. Prog Aerospace Sci (2002), 38, 389-420, DOI 10.1016/S0376-0421(02)00010-6. [CrossRef] [Google Scholar]
  10. Martínez-Filgueira, P.; Fernandez-Gamiz, U.; Zulueta, E.; Errasti, I.; Fernandez-Gauna, B. Parametric study of low-profile vortex generators. Int J Hydrogen Energy (2017), 42, 17700-17712, DOI https://doi.org/10.1016/j.ijhydene.2017.03.102. [CrossRef] [Google Scholar]
  11. Wendt, B. Parametric study of vortices shed from airfoil vortex generators. AIAA J (2004), 42, 2185-2195, DOI 10.2514/1.3672. [CrossRef] [Google Scholar]
  12. Fernandez, U.; Velte, C.M.; Rethore, P.-.; Sorensen, N.N. Self-Similarity and helical symmetry in vortex generator flow simulations. Science of Making Torque from Wind 2012 (2014), 555, DOI 10.1088/1742-6596/555/1/012036. [Google Scholar]
  13. Fernandez-Gamiz, U.; Velte, C.M.; Réthoré, P.; Sørensen, N.N.; Egusquiza, E. Testing of self-similarity and helical symmetry in vortex generator flow simulations. Wind Energy (2016), 19, 1043–1052, DOI 10.1002/we.1882. [CrossRef] [Google Scholar]
  14. Urkiola A., Fernandez-Gamiz U., Errasti I., Zulueta E. Computational characterization of the vortex generated by a vortex generator on a flat plate for different vane angles. Aerospace Science and Technology (2017), 65, 18-25. [CrossRef] [Google Scholar]
  15. Baldacchino D. Experimental data description for avatar task 3.1: experimental investigation of low-profile vortex generators in a boundary layer wind tunnel. January (2015), http://www.eera-avatar.eu. [Google Scholar]
  16. Ferreira, C., Gonzalez, A., Baldacchino, D., Aparicio, M., Gómez, S., Munduate. X., Barlas, A., Garcia N.R., Sorensen, N.N., Troldborg, N., Barakos, G., Jost, E., Knecht, S., Lutz, T., Chassapoyiannis, P., Diakakis, K., Manolesos, M, Voutsinas, S., Prospathopoulos, J., Gillebaart, T., Florentie, L., van Zuijlen, A., Reijerkerk, M. FP7 AVATAR ProjectTask 3.2 : Development of aerodynamic codes for modelling of flow devices on aerofoils and rotors. (2016), http://www.eera-avatar.eu. [Google Scholar]
  17. Baldacchino, D.; Ragni, D.; van Bussel, C.S.F.G.J. Towards integral boundary layer modelling of vane-type vortex generators. 45th AIAA Fluid Dynamics Conference, Dallas, TX (2015), 12-18. [Google Scholar]
  18. Godard, G.; Stanislas, M. Control of a decelerating boundary layer. Part 1: Optimization of passive vortex generators. Aerospace Science and Technology (2006), 10, 181-191, DOI http://dx.doi.org/10.1016/j.ast.2005.11.007. [CrossRef] [Google Scholar]
  19. OpenFOAM, https://www.openfoam.org/, 2017. [Google Scholar]
  20. Menter, F.R. 2-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA J (1994), 32, 1598-1605, DOI 10.2514/3.12149. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.