Open Access
Issue
MATEC Web Conf.
Volume 306, 2020
The 6th International Conference on Mechatronics and Mechanical Engineering (ICMME 2019)
Article Number 01006
Number of page(s) 4
Section Power Engineering and Applied Mechanics
DOI https://doi.org/10.1051/matecconf/202030601006
Published online 14 January 2020
  1. Boryczko, K., Dzwinel, W., Yuen, D.A., Dynamical clustering of red blood cells in capillary vessels, J. Mol. Model., 9 (2003), 16–33. [CrossRef] [Google Scholar]
  2. Dupin, M.M., Halliday, I., Care, C.M., Alboul, L., Munn, L.L., Modeling the flow of dense suspensions of deformable particles in three dimensions, Phys. Rev. E, Stat. Nonlin. Soft Matter Phys., 75 (2007), 066707. [CrossRef] [Google Scholar]
  3. Zhang, J., Johnson, P.C., Popel, A.S., Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows, Microvasc. Res., 77 (2009), 265–272. [CrossRef] [PubMed] [Google Scholar]
  4. Sugiyama, K., Ii, S., Takeuchi, S., Takagi, S., Matsumoto, Y., Full Eulerian simulations of biconcave neo-Hookean particles in a Poiseuille flow, Comput. Mech., 46 (2010), 147–157. [CrossRef] [Google Scholar]
  5. Zhao, H., Isfahani, A.H.G., Olson, L.N., Freund, J.B., A spectral boundary integral method for flowing blood cells, J. Comput. Phys., 229 (2010),3726–3744. [Google Scholar]
  6. Tsubota, K., Wada, S., Effect of the natural state of an elastic cellular membrane on tank-treading and tumbling motions of a single red blood cell, Phys. Rev. E, Stat. Nonlin. Soft Matter Phys., 81 (2010), 011910. [CrossRef] [Google Scholar]
  7. Imai, Y., Kondo, H., Ishikawa, T., Teck Lim, C., Yamaguchi, T., Modeling of hemodynamics arising from malaria infection, J. Biomech., 43 (2010), 1386–1393. [CrossRef] [PubMed] [Google Scholar]
  8. Secomb, T.W., Mechanics and computational simulation of blood flow in microvessels, Med. Eng. Phys., 33 (2011), 800–804. [CrossRef] [Google Scholar]
  9. Hyakutake, T., Nagai, S., “Numerical simulation of red blood cell distributions in three-dimensional microvascular bifurcations”, Microvasc. Res., 97 (2015), 115–123. [Google Scholar]
  10. Sakai, H., Sou, K., Horinouchi, H., Kobayashi, K., Tsuchida, E., Review of hemoglobin-vesicles as artificial oxygen carriers, Artif. Organs, 33 (2009), 139–145. [CrossRef] [Google Scholar]
  11. Sakai, H., Sato, A., Okuda, N., Takeoka, S., Maeda, N., Tsuchida, E., “Peculiar flow patterns of RBCs suspended in viscous fluids and perfused through a narrow tube (25µm)”, Am. J. Physiol.-Heart Circul. Physiol., 297 (2009), 583–589. [CrossRef] [Google Scholar]
  12. Succi, S., The lattice Boltzmann equation: for fluid dynamics and beyond, Oxford: Oxford University Press (2001). [Google Scholar]
  13. Peskin, C.S., Numerical analysis of blood flow in the heart, J. Comput. Phys., 25 (1977), 220–252. [CrossRef] [Google Scholar]
  14. Guo, Z., Zheng, C., Shi, B., Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys. Rev. E, Stat. Nonlin. Soft Matter Phys., 65 (2002), 046308. [Google Scholar]
  15. Evans, E.A., Fung, Y.C., Improved measurements of the erythrocyte geometry, Microvasc. Res., 4 (1972), 335–347. [CrossRef] [Google Scholar]
  16. Krüger, T., Computer simulation study of collective phenomena in dense suspensions of red blood cells under shear, Berlin: Springer (2012). [Google Scholar]
  17. Oulaid, O., Saad, A.K.W., Aires, P.S., Zhang, J., Effects of shear rate and suspending viscosity on deformation and frequency of red blood cells tank- treading in shear flows, Comp. Methods Biomech. Biomed. Engin., 19 (2016), 648–662. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.