Issue |
MATEC Web Conf.
Volume 306, 2020
The 6th International Conference on Mechatronics and Mechanical Engineering (ICMME 2019)
|
|
---|---|---|
Article Number | 01006 | |
Number of page(s) | 4 | |
Section | Power Engineering and Applied Mechanics | |
DOI | https://doi.org/10.1051/matecconf/202030601006 | |
Published online | 14 January 2020 |
Numerical simulations of blood cell flow in non-Newtonian fluid
1 Graduate School of Engineering, Yokohama National University, 240-8501 Yokohama, Japan
2 Faculty of Engineering, Yokohama National University, 240-8501 Yokohama, Japan
* Corresponding author: hyaku@ynu.ac.jp
We investigated how non-Newtonian viscosity behavior affects the flow characteristics of blood cells. Our findings offer insight about how shear thinning affects the dispersion of liposome-encapsulated hemoglobin and red blood cells in blood. The lattice Boltzmann method was used for fluid calculations, and the rheological properties of the non-Newtonian fluid were modeled with power-law relationships. The deformable three-dimensional red blood cell model was applied. First, we investigated the effects of shear thinning on the flow behavior of single blood cell. Simulation results indicate that shear thinning promotes the axial concentration of red blood cells. Next, varied the hematocrit to see how mutual interference between blood cells affects flow. At low hematocrit, shear thinning clearly promotes the axial concentration of red blood cells. As the hematocrit increases, in contrast, mutual interference has a greater effect, which counteracts shear thinning so the red blood cell distribution resembles the distribution within a Newtonian fluid.
© The Authors, published by EDP Sciences 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.