Open Access
Issue |
MATEC Web Conf.
Volume 304, 2019
9th EASN International Conference on “Innovation in Aviation & Space”
|
|
---|---|---|
Article Number | 05003 | |
Number of page(s) | 10 | |
Section | Air Traffic Management | |
DOI | https://doi.org/10.1051/matecconf/201930405003 | |
Published online | 17 December 2019 |
- European RPAS Steering Group. Roadmap for the Integration of Civil Remotely – Piloted Aircraft Systems into the European Aviation System. 2013. [Google Scholar]
- EASA. Advance NPA 2015–10: Introduction of a Regulatory Framework for the Operation of Drones. 2015. [Google Scholar]
- FAA. 8130.34D – Airworthiness Certification of Unmanned Aircraft Systems and Optionally Piloted Aircraft. 2017. [Google Scholar]
- SESAR. “European ATM Master Plan 2015.” 2015 p. 140. doi:10.2829/240873. [Google Scholar]
- R.R. Cordón, F. Javier, S. Nieto. RPAS Integration in Non–Segregated Airspace : The SESAR Approach System Interfaces Needed for Integration. 2014. [Google Scholar]
- ICAO. Manual on Remotely Piloted Aircraft Systems (Rpas). 2015. 2015. [Google Scholar]
- SESAR. Modernising the European Sky. 2014. [Google Scholar]
- E. Calvo–Fernández, L. Perez–Sanz, J.M. Cordero–García, R.M. Arnaldo–Valdés. “Conflict–Free Trajectory Planning Based on a Data–Driven Conflict–Resolution Model.” J. Guid. Control. Dyn. 40 3 2017 pp. 615–627. doi:10.2514/1.G000691. [CrossRef] [Google Scholar]
- J.A. Pérez–Castán, F. Gómez Comendador, R.M. Arnaldo–Valdés, L. Hernández Gila, J. Torrecilla Puebla. Conflict–Resolution Algorithms for Separation Minima Definition of Rpas in a Non–Segregated Airspace. 2017. [Google Scholar]
- P. Pierpaoli, A. Rahmani. “UAV Collision Avoidance Exploitation for Noncooperative Trajectory Modification.” Aerosp. Sci. Technol. 1 doi:10.1016/j.ast.2017.12.008. [Google Scholar]
- J. Bueno, C. Regidor, D. Escribano, F. Ferrández, M. Vega. Human and Technical Performance Aspects in RPAS Integration Trials in Controlled Airspace. 2016. [Google Scholar]
- C. Allignol, N. Barnier, N. Durand. Detect & Avoid , UAV Integration in the Lower Airspace Traffic.2016. [Google Scholar]
- R.A. Clothier, D.A. Greer, D.G. Greer, A.M. Mehta. “Risk Perception and the Public Acceptance of Drones.” Risk Anal. 35 6 2015 pp. 1167–1183. doi:10.1111/risa.12330. [CrossRef] [Google Scholar]
- R.A. Clothier, B.P. Williams, N.L. Fulton. “Structuring the Safety Case for Unmanned Aircraft System Operations in Non–Segregated Airspace.” Saf. Sci. 79 2015 pp. 213–228. doi:10.1016/j.ssci.2015.06.007. [CrossRef] [Google Scholar]
- R.A. Clothier, J.L. Palmer, R.A. Walker, N.L. Fulton. “Definition of an Airworthiness Certification Framework for Civil Unmanned Aircraft Systems.” Saf. Sci. 49 6 2011 pp. 871–885. doi:10.1016/j.ssci.2011.02.004. [CrossRef] [Google Scholar]
- K. Dalamagkidis, K.P. Valavanis, L.A. Piegl. “On Unmanned Aircraft Systems Issues, Challenges and Operational Restrictions Preventing Integration into the National Airspace System.” Prog. Aerosp. Sci. 44 7–8 2008 pp. 503–519. doi:10.1016/j.paerosci.2008.08.001 [CrossRef] [Google Scholar]
- Civil Aviation Safety Authority,Australian Government. Review of Aviation Safety Regulation of Remotely Piloted Aircraft Systems. 2018. [Google Scholar]
- R. Clothier, R. Walker, N. Fulton, D. Campbell. A Casualty Risk Analysis for Unmanned Aerial System (UAS) Operations over Inhabited Areas. 2007. [Google Scholar]
- R. Melnyk, D. Schrage, V. Volovoi, H. Jimenez. “A Third–Party Casualty Risk Model for Unmanned Aircraft System Operations.” Reliab. Eng. Syst. Saf. 124 2014 pp. 105–116. doi:10.1016/j.ress.2013.11.016 [CrossRef] [Google Scholar]
- Y. Lin, S. Saripalli. Collision Avoidance for UAVs Using Reachable Sets. 2015. [Google Scholar]
- A. Zarandy, T. Zsedrovits, B. Pencz, M. Nameth, B. Vanek. A Novel Algorithm for Distant Aircraft Detection. 2015. [Google Scholar]
- C.A. Persiani, S. Bagassi. “Route Planner for Unmanned Aerial System Insertion in Civil Non-Segregated Airspace.” Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 227 4 2013 pp. 687–702. doi:10.1177/0954410012439975. [CrossRef] [Google Scholar]
- J.A. Pérez–Castán, F. Gómez Comendador, A. Rodríguez–Sanz, I. Armas Cabrera, J. Torrecilla. “RPAS Conflict–Risk Assessment in Non–Segregated Airspace.” Saf. Sci. 111 March 2018 2019 pp. 7–16. doi:10.1016/j.ssci.2018.08.018 [CrossRef] [Google Scholar]
- ICAO. Doc 9689–AN/953 – Manual on Airspace Planning Methodology for the Determination of Separation Minima. 1998. [Google Scholar]
- J. Shortle, S. Noh, L. Sherry. “Collision Risk Analysis for Alternate Airspace Architectures.” AIAA/IEEE Digit. Avion. Syst. Conf. – Proc. 2017–Septe 2017. doi:10.1109/DASC.2017.8102093 [Google Scholar]
- L.M.B.C. Campos, J.M.G. Marques. “On a Dimensionless Alternative to the ICAO Target Level of Safety.” Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 230 9 2016 pp. 1548–1557. doi:10.1177/0954410015621336. [CrossRef] [Google Scholar]
- K.E. Geisinger. “Airspace Conflict Equations.” Transp. Sci. 19 2 1985 pp. 139–153. doi:10.1287/trsc.19.2.139. [CrossRef] [Google Scholar]
- Siddiqee W. “A Mathematical Model for Predicting the Number of Potential Conflict Situations at Intersecting Air Routes.” Transp. Sci. 7 2 1973 pp. 571–577. doi:10.1287/trsc.7.2.158. [CrossRef] [Google Scholar]
- F. Netjasov. “Framework for Airspace Planning and Design Based on Conflict Risk Assessment Part 1 : Conflict Risk Assessment Model for Airspace Strategic Planning.” Transp. Res. Part C Emerg. Technol. 24 2012 pp. 190–212. doi:10.1016/j.trc.2012.03.002. [CrossRef] [Google Scholar]
- J.A. Pérez–Castán, F.G. Comendador, Á. Rodriguez–Sanz, R.M. Arnaldo Valdés, G. Agueda. “RPAS Integration in Non–Segregated Airspace: Safety Metrics for Tactical Planning.” Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 0 0 2019 p. 095441001986126. doi:10.1177/0954410019861263. [Google Scholar]
- EUROCONTROL. BADA Aircraft Performance Model. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.