Open Access
MATEC Web Conf.
Volume 304, 2019
9th EASN International Conference on “Innovation in Aviation & Space”
Article Number 04017
Number of page(s) 8
Section Systems
Published online 17 December 2019
  1. Z. Skaf O.F. Eker, I.K. Jennions, A Simple State-Based Prognostic Model for Filter Clogging, in: Procedia CIRP, 2015. [Google Scholar]
  2. O.F. Eker, F. Camci, I.K. Jennions, Physics-based prognostic modelling of filter clogging phenomena, Mech. Syst. Signal Process. (2016). [Google Scholar]
  3. S. Autin, J. Socheleau, A. Dellacasa, A. De Martin, G. Jacazio, G. Vachtsevanos, Feasibility Study of a PHM System for Electro-hydraulic Servo- actuators for Primary Flight Controls, in: Annu. Conf. Progn. Heal. Manag. Soc., 2018: pp. 1–19. [Google Scholar]
  4. I.E. Idelchik, E. Fried, Handbook of hydraulic resistance: Second edition, 1986. [Google Scholar]
  5. A. De Martin, A. Dellacasa, G. Jacazio, M. Sorli, High-Fidelity Model of Electro-Hydraulic Actuators for Primary Flight Control Systems, in: Proc. 2018 Bath/ASME Symp. Fluid Power Motion Control FPMC2018 Sept. 12–14, 2018, Univ. Bath, United Kingdom, 2018: p. V001T01A058. [Google Scholar]
  6. M. Jelali, A. Kroll, Hydraulic Servo-systems, 2003. [CrossRef] [Google Scholar]
  7. G. Jacazio, A. De Martin, Influence of rotor profile geometry on the performance of an original low-pressure gerotor pump, Mech. Mach. Theory. 100(2016) 296–312. [CrossRef] [Google Scholar]
  8. S. Ergun, Fluid flow through packed columns, Chem. Eng. Prog. (1952). [Google Scholar]
  9. P.C. Carman, Fluid flow through granular beds, Process Saf. Environ. Prot. Trans. Inst. Chem. Eng. Part B. (1997). [Google Scholar]
  10. G. Vachtsevanos, F. Lewis, M. Roemer, A. Hess, B. Wu, Intelligent Fault Diagnosis and Prognosis for Engineering Systems, 2007. [Google Scholar]
  11. M.E. Orchard, G.J. Vachtsevanos, A particle-filtering approach for on-line fault diagnosis and failure prognosis, Trans. Inst. Meas. Control. (2009). [Google Scholar]
  12. D.E. Acuña, M.E. Orchard, Particle-filtering-based failure prognosis via sigma-points : Application to Lithium-Ion battery State-of-Charge monitoring, Mech. Syst. Signal Process. 85 (2017) 827–848. [CrossRef] [Google Scholar]
  13. D.E. Acuña, M.E. Orchard, A theoretically rigorous approach to failure prognosis, in: Proc. 10th Annu. Conf. Progn. Heal. Manag. Soc. 2018, 2018. [Google Scholar]
  14. A. De Martin, G. Jacazio, M. Sorli, Enhanced Particle Filter framework for improved prognosis of Electro-Mechanical flight controls Actuators, in: 3rd Eur. Conf. Progn. Heal. Manag. Soc., 2017: pp. 1–10. [Google Scholar]
  15. A. Saxena, J. Celaya, E. Balaban, K. Goebel, B. Saha, S. Saha, M. Schwabacher, Metrics for evaluating performance of prognostic techniques, in: 2008 Int. Conf. Progn. Heal. Manag. PHM 2008, 2008. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.