Open Access
Issue
MATEC Web Conf.
Volume 304, 2019
9th EASN International Conference on “Innovation in Aviation & Space”
Article Number 02012
Number of page(s) 8
Section Flight Physics: Noise & Aerodynamics
DOI https://doi.org/10.1051/matecconf/201930402012
Published online 17 December 2019
  1. Silva, M. Silva, D. Guerrieri, A. Cervone, E. Gill, A review of MEMS micropropulsion technologies for cubesats and pocketqubes, Acta Astronaut. 143 (2018) 234–243, https://doi.org/10.1016/j.actaastro.2017.11.049. [CrossRef] [Google Scholar]
  2. J. Mueller, W. Tang, A. Wallace, R. Lawton, W. Li, D. Bame, I. Chakraborty, Design, analysis and fabrication of a vaporizing liquid microthruster, in: 33rd Joint Propulsion Conference and Exhibit, 1997, p.3054. [Google Scholar]
  3. Guerrieri, Daduí & de Athayde Costa e Silva, Marsil & Cervone, Angelo & Gill, Eberhard. (2018). Optimum Design of Low–Pressure Micro–Resistojet applied to Nano–and Pico–Satellites. [Google Scholar]
  4. Ketsdever, A., Lee, R., and Lilly, T. (2005). Performance testing of a micro fabricated propulsion system for nanosatellite applications. Journal of Micromechanics and Microengineering, 15:2254 [CrossRef] [Google Scholar]
  5. M.G. De Giorgi, D. Fontanarosa, A. Ficarella, Modeling viscous effects on boundary layer of rarefied gas flows inside micronozzles in the slip regime condition, Energy Proc. 148 (2018) 838–845. [CrossRef] [Google Scholar]
  6. M.G. De Giorgi, D. Fontanarosa, A novel quasi–one–dimensional model for performance estimation of a Vaporizing Liquid Microthruster, Aerospace Science and Technology, Volume 84, 2019, Pages 1020–1034, ISSN 1270-9638, https://doi.org/10.1016/j.ast.2018.11.039. [CrossRef] [Google Scholar]
  7. J. Zhang, L. Wang, X. Zhang, M. Liu, Continuum–based model and its validity for micro–nozzle flows, Jisuan Wuli/Chinese Journal ofComputational Physics 24 (5) (2007) 598–604. [Google Scholar]
  8. G. A. Bird, Molecular gas dynamics, NASA STI/Recon Technical Report A 76. [Google Scholar]
  9. Akhlaghi, H., Balaj, M., & Roohi, E. (2013). Direct simulation Monte Carlo investigation of mixed supersonic–subsonic flow through micro–/nano–scale channels. Physica Scripta, 88(1), 015401. [CrossRef] [Google Scholar]
  10. J. Cen, J. Xu, Performance evaluation and flow visualization of a MEMS based vaporizing liquid micro–thruster, Acta Astronaut. 67(3–4) (2010) 468–482, https://doi.org/10.1016/j.actaastro.2010.04.009 [CrossRef] [Google Scholar]
  11. C. Greenshields, H. Weller, L. Gasparini, J. Reese, Implementation of semi–discrete, non–staggered central schemes in a colocated, polyhedral, finite vol–ume framework, for high–speed viscous flows, Int. J. Numer. Methods Fluids 63(1) (2010) 1–21, https://doi.org/10.1002/fld.2069. [Google Scholar]
  12. D. Y. Peng, D. B. Robinson, A new two constan tequation of state, Ind. Eng. Chem. Fundam. 15(1 (1976). 59–64. [CrossRef] [Google Scholar]
  13. A. Kurganov, E. Tadmor, New high–resolution central schemes for nonlinear conservation laws and convectiondiffusion equations, Journal ofComputational Physics 160 (1) (2000) 241 – 282. https://doi.org/10.1006/jcph.2000.6459 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  14. B. van Leer, Towards the ultimate conservative difference scheme. v. a second–order sequel to godunov’s method, Journal of ComputationalPhysics 32 (1) (1979) 101 – 136. https://doi.org/10.1016/0021-9991(79)90145 [NASA ADS] [CrossRef] [Google Scholar]
  15. White, C., Borg, M. K., Scanlon, T. J., Longshaw, S. M., John, B., Emerson, D. R., & Reese, J. M. (2018). dsmcFoam+: An OpenFOAM based direct simulation Monte Carlo solver. Computer Physics Communications, 224, 22–43. https://doi.org/10.1016/j.cpc.2017.09.030 [Google Scholar]
  16. Saadati, S. A., & Roohi, E. (2015). Detailed investigation of flow and thermal field in micro/nano nozzles using Simplified Bernoulli Trial (SBT) collision scheme in DSMC. Aerospace Science and Technology, 46, 236–255. [CrossRef] [Google Scholar]
  17. Guerrieri, D. C., Cervone, A., & Gill, E. (2016). Analysis of nonisothermal rarefied gas flow in diverging microchannels for low–pressure microresistojets. Journal of Heat Transfer, 138(11), 112403. DOI: 10.1115/1.4033955. [CrossRef] [Google Scholar]
  18. Zhang, Z., Wang, X., Zhao, L., Zhang, S., & Zhao, F. (2019). Study of Flow Characteristics of Gas Mixtures in a Rectangular Knudsen Pum p. Micromachines, 10(2), 79. DOI: 10.3390/mi10020079. [Google Scholar]
  19. Holman, T., & Osborn, M. (2018). Comparison of DSMC and Experimental Data for Low Reynolds Number Micro–Nozzle. In 2018 Joint Propulsion Conference (p. 4816). [Google Scholar]
  20. G.P. Sutton, O. Biblarz, Rocket Propulsion Elements, John Wiley & Sons, 2016. [Google Scholar]
  21. E. Sokolov, M. Chernyshov, Optimization of micronozzle performance at zero ambient pressure, Acta Astronaut. 150 (2018) 97–104, https://doi.org/10.1016/j.actaastro.2017.12.027. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.