Open Access
MATEC Web Conf.
Volume 304, 2019
9th EASN International Conference on “Innovation in Aviation & Space”
Article Number 01025
Number of page(s) 7
Section Aerostructures & Manufacturing
Published online 17 December 2019
  1. T. Naka, T. Uemori, R. Hino, M. Kohzu, K. Higashi, F. Yoshida, J. Mater. Process. Technol. Effects of strain rate, temperature and sheet thickness on yield locus of az31 magnesium alloy sheet. 201, 395–400 (2008). doi:10.1016/j.jmatprotec.2007.11.189 [CrossRef] [Google Scholar]
  2. M. Sanjari, S. Farzadfar, I. Jung, E. Essadiqi, S. Yue, Mater. Sci. Tech-lond. Influence of strain rate on hot deformation behaviour and texture evolution of az31b. 28, 437–437 (2012). [CrossRef] [Google Scholar]
  3. W. Ali, A. Mehboob, M. Han, S. Chang, Compos. Struct. Experimental study on degradation of mechanical properties of biodegradable magnesium alloy (az31) wires/poly(lactic acid) composite for bone fracture healing applications. 210, 914–921 (2019). doi:10.1016/j.compstruct.2018.12.011M. [CrossRef] [Google Scholar]
  4. A. Jäger, P. Lukáč, V. Gärtnerová, J. Bohlen, K. Kainer, J. Alloy. Compd. Tensile properties of hot rolled az31 mg alloy sheets at elevated temperatures. 378, 184–187 (2004). doi:10.1016/j.jallcom.2003.11.173 [CrossRef] [Google Scholar]
  5. F. Berge, L. Kruger, H. Ouaziz, C. Ullrich, T. Nonferr. Metal. Soc. Influence of temperature and strain rate on flow stress behavior of twin-roll cast, rolled and heattreated az31 magnesium alloys. 25, 1–13. (2015). doi:10.1016/S1003-6326(15)63572-5 [Google Scholar]
  6. A. Rodriguez, G. Ayoub, B. Mansoor, A. Benzerga, Acta Mater. Effect of strain rate and temperature on fracture of magnesium alloy AZ31b. 112, 194–208 (2016). doi:10.1016/j.actamat.2016.03.061 [Google Scholar]
  7. F.H. Abed, Mech. Time-Depend. Mat. Constitutive modeling of the mechanical behavior of high strength ferritic steels for static and dynamic applications. 14, 329–345 (2010) [CrossRef] [Google Scholar]
  8. F.H. Abed, F.S. Makarem, J. Eng. Mater-T. ASME. Comparisons of constitutive models for steel over a wide range of temperatures and strain rates. 134, 21001–21010 (2012). [CrossRef] [Google Scholar]
  9. F.S. Makarem, F.H. Abed, Int. J. Impact Eng. Nonlinear finite element modeling of dynamic localizations in high strength steel columns under impact. 52, 47–61 (2012). [CrossRef] [Google Scholar]
  10. F.H. Abed, S.I. Ranganathan, M.A. Serry, Mech. Mater. Constitutive modeling of nitrogen-alloyed austenitic stainless steel at low and high strain rates and temperatures. 77, 142–157 (2014). [CrossRef] [Google Scholar]
  11. H. Takuda, T. Morishita, T. Kinoshita, N. Shirakawa, J. Mater. Process. Technol. Modelling of formula for flow stress of a magnesium alloy AZ31 sheet at elevated temperatures. 164–165, 1258–1262 (2005) doi:10.1016/j.jmatprotec.2005.02.034 [CrossRef] [Google Scholar]
  12. C. Bruni, A. Forcellese, F. Gabrielli, M. Simoncini, J. Mater. Process. Technol. Effect of temperature, strain rate and fibre orientation on the plastic flow behaviour and formability of AZ31 magnesium alloy. 210, 1354–1363 (2010) doi:10.1016/j.jmatprotec.2010.03.025 [CrossRef] [Google Scholar]
  13. T. Uemori, T. Katahira, T. Naka, N. Tada, F. Yoshida, Procedia Manuf. Cyclic stress and strain responses of AZ31 magnesium alloy sheet metal at elevated temperatures. 15, 1792–1799 (2018) [CrossRef] [Google Scholar]
  14. X. Liu, B. Zhu, C. Xie, J. Zhang, C. Tang, Y. Chen, Mat. Sci. Eng. A. Twinning, dynamic recrystallization, and crack in AZ 31 magnesium alloy during high strain rate plane strain compression across a wide temperature. 733, 98–107 (2018) doi:10.1016/j.msea.2018.07.030 [CrossRef] [Google Scholar]
  15. F. Kabirian, A. Khan, T. Gnäupel-Herlod, J. Alloy. Compd. Plastic deformation behavior of a thermo-mechanically processed AZ31 magnesium alloy under a wide ange of temperature and strain rate. 673, 327–335 (2016) doi:10.1016/j.jallcom.2016.02.145 [CrossRef] [Google Scholar]
  16. I. Maksoud, H. Ahmed, J. Rödel, Mat. Sci. Eng. A. Investigation of the effect of strain rate and temperature on the deformability and microstructure evolution of AZ31 magnesium alloy. 504, 40–48 (2009) doi:10.1016/j.msea.2008.10.033 [CrossRef] [Google Scholar]
  17. I. Ulacia, N. Dudamell, F. Gálvez, S. Yi, M. Pérez-Prado, I. Hurtado, Acta Mater. Mechanical behavior and microstructural evolution of a Mg AZ31 sheet at dynamic strain rates. 58, 2988–2998 (2010) doi:10.1016/j.actamat.2010.01.029 [CrossRef] [Google Scholar]
  18. C. Tan, S. Xu, L. Wang, Z. Chen, F. Wang, H. Cai, T. Nonferr. Metal. Soc. Effect of temperature on mechanical behavior of AZ31 magnesium alloy. 17, 41–45 (2007). doi:10.1016/S1003-6326(07)60045-4 [Google Scholar]
  19. G. Bajargan, G. Singh, D. Sivakumar, U. Ramamurty, Mat. Sci. Eng. A. Effect of temperature and strain rate on the deformation behavior and microstructure of a homogenized AZ31 magnesium alloy. 579, 26–34 (2013). doi:10.1016/j.msea.2013.04.088 [CrossRef] [Google Scholar]
  20. W. Abuzaid, H. Sehitoglu, J. Lambros, Mater. Sci. Eng. Plastic strain localization and fatigue micro-crack formation in Hastelloy X. 561, 507–51 (2013). [CrossRef] [Google Scholar]
  21. W. Abuzaid, H. Sehitoglu, J. Lambros, Mater. High Temp. Localisation of plastic strain at the microstructurlal level in Hastelloy X subjected to monotonic, fatigue, and creep loading: the role of grain boundaries and slip transmission. 33, 384–400 (2016) [CrossRef] [Google Scholar]
  22. G.Z. Voyiadjis, F.H. Abed, Model. Simul. Mater. Sc. Transient localizations in metals using microstructure-based yield surfaces. 15, S83 (2007). [CrossRef] [Google Scholar]
  23. F.H. Abed, G.Z. Voyiadjis, Int. J. Multiscale Com. Adiabatic shear band localizations in BCC metals at high strain rates and various initial temperatures. 5, 325–349 (2007). [CrossRef] [Google Scholar]
  24. F.H. Abed, G.Z. Voyiadjis, J. Eng. Mech-ASCE. Thermodynamic consistent formulations of viscoplastic deformations in FCC metals. 133, 76–86 (2007). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.