Open Access
Issue
MATEC Web Conf.
Volume 304, 2019
9th EASN International Conference on “Innovation in Aviation & Space”
Article Number 01006
Number of page(s) 8
Section Aerostructures & Manufacturing
DOI https://doi.org/10.1051/matecconf/201930401006
Published online 17 December 2019
  1. R. Bisplinghoff, H. Ashley and R. Halfman, Aeroelasticity, New York, USA: Dover Publications, 1955. [Google Scholar]
  2. A. Zanotti, D. Grassi and G. Gibertini, “Experimental investigation of a triling edge L-shaped tab on a pitching airfoil in deep dynamic stall conditions,” Proc IMechE Part G: J Aerospace Engineering, vol. 228, no. 12, pp. 2371–2382, 2014. [CrossRef] [Google Scholar]
  3. F. Carta, “A Comparison of the Pitching and Plunging Response of an Oscillating Airfoil,” Nasa Contractor Report 3172, 1979. [Google Scholar]
  4. C. Zhu and T. Wang, “Comparative Study of Dynamic Stall under Pitch Oscillation and Oscillating Freestream on Wind Turbine Airfoil and Blade,” Applied Sciences, vol. 8, no. 1242, 2018. [CrossRef] [Google Scholar]
  5. S. Sato, H. Yokoyama and A. Iida, “Control of Flow around an Oscillating Plate for Lift Enhancement by Plasma Actuators,” Applied Sciences, vol. 9, no. 776, 2019. [CrossRef] [Google Scholar]
  6. S. L. Cattafesta, “Actuators for Active Flow Control,” Annual Review of Fluid Mechanics, vol. 43, pp. 247–272, 2011. [CrossRef] [Google Scholar]
  7. M. G. De Giorgi, S. Traficante, C. De Luca, D. Bello and A. Ficarella, “Active Flow Control Techniques on a Stator Compressor Cascade: A Comparison Between Synthetic Jet and Plasma Actuators,” in ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, Copenhagen, Denmark, 2012. [Google Scholar]
  8. M. De Giorgi, D. Bello, S. Traficante and A. Ficarella, “Comparing Plasma Actuator Model and Application on a Compressor Cascade,” in ISABE-2013-1105, 21th Isabe Conference, Busan, Korea, 2013. [Google Scholar]
  9. L. Malzacher, s. Geist, D. Peitsch and H. Hennings, “A low speed compressor test rig for flutter investigations,” in Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Seoul, South Korea, 2016. [Google Scholar]
  10. H. Hennings, “Flutter Investigations on a Finite Linear 2D Compressor Cascade in a Wind Tunnel in Incompressible Flow,” RWTH Aachen University, Aachen, Germany, 1997. [Google Scholar]
  11. E. Pescini, D. S. Martìnez, M. G. De Giorgi and A. Ficarella, “Optimization of micro single dielectric barrier discharge plasma actuator models based on experimental velocity and body force fields,” Acta Astronautica, vol. 116, pp. 318–332, 2015. [CrossRef] [Google Scholar]
  12. E. Pescini, F. Marra, M. G. De Giorgi, L. Francioso and A. Ficarella, “Investigation of the boundary layer characteristics for assessing the DBD plasma actuator control of the separated flow at low Reynolds numbers,” Experimental Thermal and Fluid Science, vol. 81, pp. 482–498, 2017. [CrossRef] [Google Scholar]
  13. O. Thomas, T. Corke, I. M., A. Kozlov and D. Schatzman, “Optimization of Dielectric Barrier Discharge Plasma Actuators for Active Aerodynamic Flow Control,” AIAA Journal, vol. 47, no. 9, pp. 2169–2178, 2009. [CrossRef] [Google Scholar]
  14. W. Shyy, B. Jayaraman and A. Andersson, “Modeling of glow discharge-induced fluid dynamics,” Journal of Applied Physics, vol. 92, no. 11, pp. 6434–6443, 2002. [CrossRef] [Google Scholar]
  15. V. Motta, L. Malzacher, P. Neumann and D. Peitsch, “Numerical assessment of virtual control surfaces for compressor blades,” in 35th AIAA Applied Aerodynamics Conference, 59, June 2017. [Google Scholar]
  16. V. Motta, L. Malzacher and D. Peitsch, “Numerical investigation of virtual control surfaces for aeroelastic control on compressor blades,” Journal of Fluids and Structures, vol. 81, pp. 617–637, 2018. [CrossRef] [Google Scholar]
  17. V. Motta, L. Malzacher, V. Bicalho Civinelli de Almeida and D. Peitsch, “Aeroelastic control on compressor blades with virtual control surfaces: a numerical assessment,” in Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Oslo, Norway, 2018. [Google Scholar]
  18. C. F.O., “An Experimental Investigation of Gapwise Periodicity and Unsteady Aerodynamic Response in an Oscillating Cascade,” NASA, United Technologies Research Center, 1982. [Google Scholar]
  19. V. Motta, L. Malzacher and D. Peitsch, “Numerical assessment of virtual control surfaces for load alleviation on compressor blades,” Applied Sciences, vol. 8, no. 125, 2018. [CrossRef] [Google Scholar]
  20. W. Sachs, “Windkanal fr Instationre Gitter (WiG), Messstrecke fr Instationre Gitter (MiG). Phase I: Bau und InbetriebnahmeWindkanal fr Instationre Gitter (WiG),” DLR, Institute of Aeroelasticity, Gttingen, Germany, 1990. [Google Scholar]
  21. M. McCroskey, “Unsteady Airfoils,” Annual Review of Fluid Mechanics, vol. 14, no. 1, pp. 285–311, 1982. [CrossRef] [Google Scholar]
  22. Q. Wang and Q. Zhao, “Rotor airfoil profile optimization for alleviating dynamic stall characteristics,” Aerospace Science and Technology, vol. 72, pp. 502–515, 2018. [CrossRef] [Google Scholar]
  23. A. Zanotti and G. Gibertini, “Experimental investigation of the dynamic stall phenomenon on a NACA23012 oscillating airfoil,” Journal of Aerospace Engineering, vol. 0, pp. 1–14, 2012. [Google Scholar]
  24. M. Abdollahzadeh, J. Pascoa and P. Oliveira, “Comparison of DBD plasma actuators flow control authority in different modes of actuation,” Aerospace Science and Technology, vol. 78, pp. 183–196, 2018. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.