Open Access
Issue
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
Article Number 15001
Number of page(s) 9
Section Special Session in Memoria of Prof. Ewald Macha
DOI https://doi.org/10.1051/matecconf/201930015001
Published online 02 December 2019
  1. G. Stanfield, Discussion of „The strength of metals under combined alternating stresses”, by H. Gough and H. Pollard. Proc. Inst. of Mechanical Engineers, 131, 93 (1935) [Google Scholar]
  2. F. Stulen, H. Cummings, A failure criterion for multi-axial fatigue stresses. Proceedings-American Society for Testing and Materials, 19428-2959, p. 822–835 (1954) [Google Scholar]
  3. W.N. Findley, A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending. Journal of Engineering for Industry, pp. 301-306 (1959) [CrossRef] [Google Scholar]
  4. D. Mcdiarmid, A general criterion for high cycle multiaxial fatigue failure. Fatigue & Fracture of Engineering Materials & Structures, 14, p. 429–453 (1991) [CrossRef] [Google Scholar]
  5. D. Mcdiarmid, A new analysis of fatigue under combined bending and twisting, The Aeronautical Journal, 78, p. 325–329 (1974) [Google Scholar]
  6. D. Mcdiarmid, Multiaxial fatigue life prediction using a shear stress based critical plane failure criterion, Technical Research Centre of Finland, Fatigue Design, 2, (1992) [Google Scholar]
  7. T. Matake, An explanation on fatigue limit under combined stress. Bulletin of JSME, 20, p. 257–263 (1977) [CrossRef] [Google Scholar]
  8. I.V. Papadopoulos, Long life fatigue under multiaxial loading. International Journal of Fatigue, 23, p. 839–849(2001) [CrossRef] [Google Scholar]
  9. I.V. Papadopoulos, P. Davoli, C. Gorla, M. Filippini, A. Bernasconi, A comparative study of multiaxial high-cycle fatigue criteria for metals. International Journal of Fatigue, 19, p.219–235(1997) [CrossRef] [Google Scholar]
  10. E. Vidal, B. Kenmeugne, J. Robert, J. Bahuaud, Fatigue life prediction of components by the use of multiaxial criterion. In: ICBMFF4, (1994) [Google Scholar]
  11. G. Marulo, F Frendo, L. Bertini, A. Fatemi, On the application of a critical plane approach to the life assessment of welded joints. Procedia Engineering, 213, p. 448–458(2018) [CrossRef] [Google Scholar]
  12. S. Vantadori, G.M.J. Almedia, G. Fortese, G.C.V Pessoa J.A Araujo, Early fretting crack orientation by using the critical plane approach. International Journal of Fatigue, 114 p. 282–288(2018) [CrossRef] [Google Scholar]
  13. E. Macha. Generalization of fatigue fracture criteria for multiaxial sinusoidal loadings in the range of random loadings, Biaxial and Multiaxial Fatigue, EGF3 (Edited by. M.W. Brown and K.J. Miller), Mechanical Engineering Publications, London, p. 425-436 (1989) [Google Scholar]
  14. T. Łagoda, P. Ogonowski, Criteria of multiaxial random fatigue based on stress, strain and energy parameters of damage in the critical plane, Mat.-wiss. u. Werkstofftech, 36, p. 429-437 (2005) [Google Scholar]
  15. K. Walat M. Kurek, P. Ogonowski, T. Łagoda, The multiaxial random fatigue criteria based on strain and energy damage parameters on the critical plane for the low-cycle range. International Journal of Fatigue, 37 p.100–111 (2012) [CrossRef] [Google Scholar]
  16. K. Walat, T. Łagoda, The equivalent stress on the critical plane determined by the maximum covariance of normal and shear stresses. Materialwissenschaft und Werkstofftechnik, 41, p. 218–220 (2010) [CrossRef] [Google Scholar]
  17. A. Niesłony, T. Łagoda, K. Walat, M. Kurek, Multiaxial fatigue behaviour of AA6068 and AA2017A aluminium alloys under in-phase bending with torsion loading condition, Mat.-wiss. U. Werkstofftech., 45, p. 947-952 (2015) [CrossRef] [Google Scholar]
  18. K. Walat, T. Łagoda, M. Kurek, Life time assessment of an aluminium alloy under complex low cycle fatigue loading, Materials Testing, 57, p. 160-164 (2015) [CrossRef] [Google Scholar]
  19. M. Kurek, T. Łagoda, S. Vantadori, Estimation of fatigue life of selected construction materials under cyclic loading, Fracture and Structural Integrity, IX, p. 302-308 (2015) [Google Scholar]
  20. A. Karolczuk, M. Kurek, T. Łagoda, Fatigue life of aluminium alloy 6082 T6 under constant and variable amplitudę bending with torsion, J. of Theoretical and Applied Mechanics, vol. 53, No 2, 2015, pp. 421-430 [CrossRef] [Google Scholar]
  21. C. Ronchei, A. Carpinteri, G. Fortese, A. Spagnoli, S. Vantadori, M. Kurek, T. Łagoda, Life estimamtion by varying the critical plane orientation in the modified Caripnteri-Spagnoli criterion, Frattura ed Integrita Strutturale, 34, p. 74-79 (2015) [Google Scholar]
  22. M. Kurek, T. Łagoda, F. Morel, Estimation of the fatigue life of 35NCD16 alloy steel under random loading, Materials Science, 52, p. 492-499 (2017) [CrossRef] [Google Scholar]
  23. A. Carpinteri, M. Kurek, T. Łagoda, S. Vantadori, Estimation of fatigue life under multiaxial loading by varying the critical plane orientation, Int. J. Fatigue, 100, part II, p. 512-520 (2017) [CrossRef] [Google Scholar]
  24. M. Kurek, T. Łagoda, Determination of the critical plane orientation depending on the fatigue curves for bending and torsion, Frattura ed Integrita Strutturale, 41, p. 24-30 (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.