Open Access
Issue
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
Article Number 09003
Number of page(s) 9
Section Life Assessment
DOI https://doi.org/10.1051/matecconf/201930009003
Published online 02 December 2019
  1. J. Zhang, Q. Xiao, X. Shi and B. Fei, Effect of mean shear stress on torsion fatigue failure behavior of 2A12-T4 aluminum alloy, Int Jour of Fatigue, 67: 173–182 (2014) [CrossRef] [Google Scholar]
  2. K. Kluger, Fatigue life estimation for 2017A-T4 and 6082-T6 aluminium alloys subjected to bending-torsion with mean stress, Int Jour of Fatigue, 80: 22–29 (2015) [CrossRef] [Google Scholar]
  3. K. Kluger and T. Lagoda, Fatigue life estimation for selected materials in multiaxial stress states with mean stress, Jour of Theo and Appl Mechan, 54: 385–396 (2016) [CrossRef] [Google Scholar]
  4. L. Susmel, R. Tovo and P. Lazzarin, The mean stress effect on the high-cycle fatigue strength from a multiaxial fatigue point of view, Int Jour of Fatigue, 27: 928-943 (2005) [CrossRef] [Google Scholar]
  5. H. Gadouini, Y. Nadot and C. Rebours, Influence of mean stress on the multiaxial fatigue behaviour of defective materials, Int Jour of Fatigue, 30: 1623-1633 (2008) [CrossRef] [Google Scholar]
  6. I.V. Papadopoulos, P. Davoli, C. Gorla, M. Filippini and A. Bernasconi, A comparative study of multiaxial high-cycle fatigue criteria for metals, Int Jour of Fatigue, 19: 219-235 (1997) [Google Scholar]
  7. S. Xinhong, Z. Jianyu, X. Qingshan and F. Binjun, Multi-axial high-cycle fatigue failure behavior of 2A12-T4 aluminum alloy under torsion loading, The Tenth International Conference on Multiaxial Fatigue & Fracture ICMFF10 (2013) [Google Scholar]
  8. T. Moroshita, Y. Takda, F. Ogawa, N. Hiyoshi and T. Itoh, Multiaxial fatigue properties of stainless steel under seven loading paths consisting, Theo and Appl Fract Mechan, 96: 387-397 (2018) [CrossRef] [Google Scholar]
  9. Merchant HD, Kattamis TZ, Scharf G. Homogenization of aluminum alloys. Proceedings of the Homogenization and Annealing of Aluminum and Copper Alloys. Cincinnati, Ohio, October 12-13, 1987. The Metallurgical Society Publication: 1-53 (1987) [Google Scholar]
  10. E.M. Elgallad, P. Shen, Z. Zhang and X.-G. Chen, Effects of heat treatment on the microstructure and mechanical properties of the AA2618 DC cast plate, Mat and Desi, 61: 133-140 (2014) [CrossRef] [Google Scholar]
  11. I. Özbek, A study on the re-solution heat treatment of AA 2618 aluminum alloy, Mat Charac, 58: 312-317 (2007) [CrossRef] [Google Scholar]
  12. R. Viroulaud, Protection contre la corrosion des alliages d’aluminium par la conversion TCP : influence de la chimie de surface, Thèse de doctorat, Université Pierre et Marie Currie (2016) [Google Scholar]
  13. B. Malek, C. Mabru and M. Chaussumier, Study and modelling of anodized 2618 aluminum behavior subjected to multiaxial fatigue, MATEC Web Conf, 165 (2018) [Google Scholar]
  14. W. N. Findley, A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending, Engineering Materials research Laboratory, Division of Engineering (1958) [Google Scholar]
  15. I. Koutiri, D. Bellett, F. Morel, L. Augustins and J. Adrien, High cycle fatigue damage mechanisms in cast aluminium subject to complex loads, Int Jour of Fatigue, 47: 44-57 (2013) [CrossRef] [Google Scholar]
  16. A. Fatemi and D. F. Socie, Fati Fract. Engng Mater. Struc, 11: 149-165 (1998) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.