Open Access
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
Article Number 06002
Number of page(s) 9
Section Contact and Fretting Fatigue
Published online 02 December 2019
  1. W.E. Littmann. The mechanism of contact fatigue. NASA Spec Report, SP-237 n.d. [Google Scholar]
  2. W.E. Littmann, R.L. Widner. Propagation of contact fatigue from surface and subsurface origins. J Basic Eng, 88: 624-636 (1996) [CrossRef] [Google Scholar]
  3. A.F. Bower. The influence of crack face friction and trapped fluid on surface initiated rolling contact fatigue cracks. J Tribol, 110: 704-711 (1988) [CrossRef] [Google Scholar]
  4. T.A. Harris. Rolling bearing analysis. Wiley, New York (2001) [Google Scholar]
  5. International Organization for Standards. Dynamic load ratings and rating life. ISO: Int Organ Stand (2007) [Google Scholar]
  6. E. loannides, T. A. Harris. A new fatigue life model for rolling bearings. J Tribol, 107: 367-377 (1985) [CrossRef] [Google Scholar]
  7. T.A. Harris. Prediction of ball fatigue life in a ball/v-ring test rig. J Tribol, 119: 365-370 (1997) [CrossRef] [Google Scholar]
  8. J. Courbon, G. Lormand, G. Dudragne, P. Daguier, A. Vincent. Influence of inclusion pairs, clusters and stringers on the lower bound of the endurance limit of bearing steels. Tribol Int, 36: 921-928 (2003) [CrossRef] [Google Scholar]
  9. P. Lamagnere, R. Fougeres, G. Lormand, A. Vincent, D. Girodin, G. Dudragne, F. Vergne. A Physically Based Model for Endurance Limit of Bearing Steels. J Tribol, 120: 421-426 (1998) [CrossRef] [Google Scholar]
  10. J. Lai, T. Lund, K. Rydén, A. Gabelli, I. Strandell. The fatigue limit of bearing steels Part I: A pragmatic approach to predict very high cycle fatigue strength. Int J Fatigue, 37: 155-168 (2012) [CrossRef] [Google Scholar]
  11. A. Gabelli, J. Lai, T. Lund, K. Rydén, I. Strandell, G. E. Morales-Espejel. The fatigue limit of bearing steels – Part II: Characterization for life rating standards. Int J Fatigue, 38: 169-180 (2012) [CrossRef] [Google Scholar]
  12. B. Allison, A. Pandkar. Critical factors for determining a first estimate of fatigue limit of bearing steels under rolling contact fatigue. Int J Fatigue, 117: 396-406 (2018) [CrossRef] [Google Scholar]
  13. R.L. Scott, R.K. Kepple, M.H. Miller. The effect of processing induced near surface residual stress on ball bearing fatigue. Rolling contact phenomenon, 301-316, Elsevier, Amsterdam (1962) [Google Scholar]
  14. J.O. Almen. Effect of Residual Stress on Rolling Bodies. Rolling contact phenomenon, 400–424, Elsevier, Amsterdam (1962) [Google Scholar]
  15. E.V. Zaretsky, R.J. Parker, W.J. Anderson. A Study of residual stress induced during rolling. J Lubr Technol, 91: 314-319 (1969) [CrossRef] [Google Scholar]
  16. K. Maeda, H. Kashimura, N. Tsushima. Investigation on the fatigue fracture of core in carburized rollers of bearings. Tribol T, 29: 85-90 (1986) [Google Scholar]
  17. G. Donzella, R. Gerosa, C. Petrogalli, B. Rivolta, G. Silva, M. Beretta. Evaluation of the residual stresses induced by shot peening on some sintered steels. Procedia Engineer, 10: 3399-3404 (2011) [CrossRef] [Google Scholar]
  18. A.P. Voskamp, E.J. Mittemeijer. The effect of the changing microstructure on the fatigue behavior during cycling rolling contact loading. Zeitschrift fur Metallkunde, 88: 310-319 (1997) [Google Scholar]
  19. N.G. Popinceanu, E. Diaconescu, S. Cretu. Critical stresses in rolling contact fatigue. Wear, 71: 265-282 (1981) [CrossRef] [Google Scholar]
  20. V. Bhargava, G.T. Hahn, C.A. Rubin. An elastic–plastic finite element model of rolling contact, part 1: analysis of single contacts. J Appl Mech, 52: 67-74 (1985) [CrossRef] [Google Scholar]
  21. A.F. Bower, K. L. Johnson. The influence of strain hardening on cumulative plastic deformation in rolling and sliding line contact. J Mech Phys Solids, 37: 471-493 (1989) [CrossRef] [Google Scholar]
  22. M. Howell, G. Hahn, C. Rubin, D. McDowell. Finite element analysis for nonlinear kinematic hardening bearing steel. J Tribol, 117: 729-736 (1995) [CrossRef] [Google Scholar]
  23. A. Warhadpande, F. Sadeghi, R. D. Evans, M. N. Kotzalas. Influence of plasticity-induced residual stresses on rolling contact fatigue. Tribol T, 55: 422-437 (2012) [CrossRef] [Google Scholar]
  24. Y. Shen, S. Mobasher Moghadam, F. Sadeghi, K. Paulson, R.W. Trice. Effect of retained austenite – Compressive residual stresses on rolling contact fatigue life of carburized AISI 8620 steel. Int J Fatigue, 75: 135-144 (2015) [CrossRef] [Google Scholar]
  25. A.A. Walvekar, F. Sadeghi. Rolling contact fatigue of case carburized steels. Int J Fatigue, 95: 264-281 (2017) [CrossRef] [Google Scholar]
  26. N.R. Paulson, Z. Golmohammadi, A. A. Walvekar, F. Sadeghi, K. Mistry. Rolling contact fatigue in refurbished case carburized bearings. Tribol Int, 115: 348-364 (2017) [CrossRef] [Google Scholar]
  27. J. Guan, L. Wang, Y. Mao, X. Shi, X. Ma, B. Hu. A continuum damage mechanics based approach to damage evolution of M50 bearing steel considering residual stress induced by shot peening. Tribol Int, 126: 218-228 (2018) [CrossRef] [Google Scholar]
  28. G.T.C. Ooi, S. Roy, S. Sundararajan. Investigating the effect of retained austenite and residual stress on rolling contact fatigue of carburized steel with XFEM and experimental approaches. Mat Sci Eng A, 732: 311-319 (2018) [CrossRef] [Google Scholar]
  29. Z. Golmohammadi, A. Walvekar, F. Sadeghi. A 3D efficient finite element model to simulate rolling contact fatigue under high loading conditions. Tribol Int, 126: 258-269 (2018) [CrossRef] [Google Scholar]
  30. J.D. Eshelby. Elastic inclusions and inhomogeneities. Prog Solid Mech, 2: 89-140 (1961) [Google Scholar]
  31. T. Mura, Micromechanics of defects in solids, Martinus Nijhoff Publishers, Dordrecht, The Netherlands (1982) [Google Scholar]
  32. C. Meng, W. Heltsley, D.D. Pollard. Evaluation of the Eshelby solution for the ellipsoidal inclusion and heterogeneity. Comput Geosci, 40: 40-48 (2012) [CrossRef] [Google Scholar]
  33. R.K. Kepple, R.L. Mattson. Rolling element fatigue and macroresidual stress. J Lubr Technol, 92(1): 76-81 (1970) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.