Open Access
MATEC Web Conf.
Volume 294, 2019
2nd International Scientific and Practical Conference “Energy-Optimal Technologies, Logistic and Safety on Transport” (EOT-2019)
Article Number 04010
Number of page(s) 8
Section Modern Technologies of Organization of International Transportations and Logistics
Published online 16 October 2019
  1. V. Matsiuk, V. Myronenko, V. Horoshko, A. Prokhorchenko, T. Hrushevska, R Shcherbyna, N. Matsiuk, J. Khokhlacheva, I. Biziuk, N. Tymchenko Improvement of efficiency in the organization of transfer trains at developed railway nodes by implementing a «flexible model» Eastern–European Journal of Enterprise Technologies: Control processes, 2/3(98), 32–39. (2019). [CrossRef] [Google Scholar]
  2. N. Shramenko, V. Shramenko Mathematical model of the logistics chain for the delivery of bulk cargo by rail transport. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 136–141. (2018). [CrossRef] [Google Scholar]
  3. M. Bohlin, S. Gestrelius, F. Dahms, M. Mihalák, & H. Flier. Optimization Methods for Multistage Freight Train Formation. Transportation Science, 50(3), 823-840. doi: 10.1287/trsc.2014.0580. (2016). [CrossRef] [Google Scholar]
  4. Bontekoning, Y. M., Priemus H. Breakthrough innovations in intermodal freight transport. Transportation Planning and Technology. 27 (5), 335–345. (2004). doi: 10.1080/0308106042000273031 [CrossRef] [Google Scholar]
  5. Konings R., Priemus H., Nijkamp P The Future of Intermodal Freight Transport. Operations, Design and Policy. Transport economics, management and policy. Series Editor: Kenneth Button, University Professor, School of Public Policy, George Mason University, USA, 135–151. (2008) [Google Scholar]
  6. G. Peresta, T. Bolvanovskaya Analiz vplyvu skladovykh elementiv na velychynu oborotu vantazhnoho vahona. Zbirnyk naukovykh prats DNUZT im. akad. V.Lazariana. Vyp. 1. P. 75–77. (2011) [in Ukrainian]. [Google Scholar]
  7. Tan A. W. K., Zhao Y., Halliday T. A Blockchain Model for Less Container Load Operations in China International Journal of Information Systems and Supply Chain Management. 11(2), 39–53. (2018). doi: [CrossRef] [Google Scholar]
  8. Kos S., Vukić L., Brčić D. Comparison of External Costs in Multimodal Container Transport Chain PROMET – Traffic&Transportation, 29 (2), 243. (2017). doi: 10.7307/ptt.v29i2.2183 [CrossRef] [Google Scholar]
  9. Liu T., Zheng G. Study Logistics Architecture for Grain Container Multimodal Transport Based on Multi-Agent Proceedings of The 7th International Conference on Computer Engineering and Networks – PoS(CENet2017). (2017). doi: 10.22323/1.299.0049 [Google Scholar]
  10. Hao C., Yue Y. Optimization on Combination of Transport Routes and Modes on Dynamic Programming for a Container Multimodal Transport System Procedia Engineering, 137, 382–390. (2016). doi: 10.1016/j.proeng.2016.01.272 [CrossRef] [Google Scholar]
  11. M. Yaghini, M. Momeni, & M. Sarmadi, A hybrid solution method for fuzzy train formation planning. Applied Soft Computing, 31, 257-265. doi: 10.1016/j.asoc.2015.02.039. (2015). [CrossRef] [Google Scholar]
  12. Uwe Clausen, Robert Voll A comparison of North American and European railway systems. Why Europe needs particular optimization models for railway freight traffic. Eur. Transp. Res. Rev, 5, 129–133. DOI 10.1007/s12544-013-0090-4. (2013). [CrossRef] [Google Scholar]
  13. Nagornyi Ye. Transportno-ekspedytorska diialnist Ye.V. Nahornyi, D.V. Lomotko, N.Iu. Shramenko ta in.: pidruchnyk. – Kh.: KhNADU, 2012. – 352 s. [in Ukrainian] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.