Open Access
Issue
MATEC Web Conf.
Volume 292, 2019
23rd International Conference on Circuits, Systems, Communications and Computers (CSCC 2019)
Article Number 01067
Number of page(s) 7
Section Circuits and Systems
DOI https://doi.org/10.1051/matecconf/201929201067
Published online 24 September 2019
  1. CIGRÉ Working Group B4-52, “HVDC grid feasibility study”, Final Report, (2012) [Google Scholar]
  2. D. Van Hertem, M. Ghandhari, “Multi-terminal VSC HVDC for the European supergrid: Obstacles”, Ren. and Sust. En. Rev., 14(9) 3156-3163 (2010) [CrossRef] [Google Scholar]
  3. N. Chaudhuri, B. Chaudhuri, R. Majumder, A. Yazdani, “Multi-terminal direct-current grids: Modeling, analysis, and control”, Wiley-IEEE Press (2014) [Google Scholar]
  4. H. Rao, “Architecture of Nan’ao multi-terminal VSC-HVDC system and its multi-functional control”, CSEE J. of Power. and Energy Sys. 1 9-18 (2015) [CrossRef] [Google Scholar]
  5. X. Li, Z. Yuan, J. Fu, Y. Wang, T. Liu, Z. Zhu, “Nanao multi-terminal VSC-HVDC project for integrating large-scale wind generation”, 2014 IEEE PES General Meeting/Conference & Exposition 1-5, (2014) [Google Scholar]
  6. G. Tang, Z. He, H. Pang, X. Huang, X. Zhang, “Basic topology and key devices of the five-terminal DC grid”, CSEE J. of Power and Energy Sys. 1 22-35 (2015) [CrossRef] [Google Scholar]
  7. T. An, “Fault clearance for Zhoushan HVDC system”, China Int. Conf. on Electricity Distribution (CICED) (Shenzhen, China, 2014) [Google Scholar]
  8. Y. Pipelzadeh, B. Chaudhuri, T.C. Green, Y. Wu, H. Pang, J. Cao, “Modelling and dynamic operation of the Zhoushan DC grid: World’s first five- terminal VSC-HVDC project”, Int. High Voltage Direct Current Conf. (Seoul, Korea, 2015). [Google Scholar]
  9. J. Zhou, H. Li, R. Xie, L. Liu, W. Nie, K. Song, F. Huo, D. Liang, “Research of DC circuit breaker applied on Zhoushan multi-terminal VSC-HVDC project”, IEEE PES Asia- Pacific Power and Energy Eng. Conf. (APPEEC) 1636-1640 (2016). [CrossRef] [Google Scholar]
  10. T. Guangfu, “High power conversion technology for high voltage DC transmission application”, Energy Conversion Congress and Exposition (ECCE) (Milwaukee, USA, 2016) [Google Scholar]
  11. C-EPRI Participates in the World’s First DC Circuit Breaker Project. Available: http://www.cepri.com.cn/release/details_66_759.html [Google Scholar]
  12. R. Teixeira, P. Bauer, J. Enslin, “Challenges on the road to future high-voltage multi-terminal DC networks”, 16th Conf. on Power Electronics and Applications (EPE’14-ECCE Europe) (Lappeenranta, Finland, 2014) [Google Scholar]
  13. N. Kumar, R. Kumar, M.S. Rao, N.M. Goswami, B.B. Mukherjee, O. Chandy, “Commissioning experience and challenges of world’s first 800 kV, 6000 MW NER - Agra multi terminal HVDC system”, CIGRE Session (Paris, France, 2016) [Google Scholar]
  14. P.V.I. Taiarol, G.A. MacPhail, V.S. Pathirana, B. Mampaey, “The Atlantic wind connection - Building the foundation for offshore wind energy”, CIGRE Belgium Conf. (Brussels, Belgium, 2014) [Google Scholar]
  15. ABB solves 100-year-old electrical puzzle - new technology to enable future DC grid, http://www.abb.com/cawp/seitp202/65df338284e41b3dc1257aae0045b7de.aspx [Google Scholar]
  16. https://www.ee.washington.edu/research/pstca/, accessed June 2016. [Google Scholar]
  17. E. Kalnay, et al., “The NCEP/NCAR 40-year reanalysis project”, Bulletin of American Meteorological Society 77 437-470 (1996). [NASA ADS] [CrossRef] [Google Scholar]
  18. S. Lazarou, C.-F. Covrig, A. Chaouachi, I. Colak, P. Minnebo, H. Wilkening, G. Fulli, “Behaviour of multi-terminal grid topologies in renewable energy systems under multiple loads”, Int. Conf. on Renewable Energy Research and Applications (ICRERA) (Nagasaki, Japan, 2012). [Google Scholar]
  19. O. Gomis-Bellmunt, J. Liang, J. Ekanayake, R. King, N. Jenkins, “Topologies of multiterminal HVDC-VSC transmission for large offshore wind farms”, Elec. Pow. Sys. Res. 81 271-281 (2011) [CrossRef] [Google Scholar]
  20. J. Yang, J. Fletcher, J. O’Reilly, “Multiterminal DC wind farm collection grid internal fault analysis and protection design”, IEEE Trans Power Delivery 25(4) 2308-2318 (2010) [CrossRef] [Google Scholar]
  21. J. Rafferty, L. Xu, D.J. Morrow, “DC fault analysis of VSC based multi-terminal HVDC systems”, IET Conf. on AC and DC Power Transmission, (Birmingham, UK, 2012) [Google Scholar]
  22. A. Wasserrab, G. Balzer, “Evaluation of short circuit currents in multi-terminal HVDC systems”, Conf. and Exp. on Electrical and Power Eng., (Iasi, Romania, 2012) [Google Scholar]
  23. A. Wasserrab, B. Just, G. Balzer, “Contribution of HVDC converters to the DC short circuit current”, Universities’ Power Eng. Conf. (UPEC) (Dublin, Ireland, 2013) [Google Scholar]
  24. U.N. Gnanarathna, J.Z. Zhou, M. Heidari, “Electromagnetic transient overvoltage study of a multi- terminal VSC based HVDC system”, CIGRE Canada Conf. (Calgary, Canada, 2013) [Google Scholar]
  25. K. De Kerf, K. Srivastava, M. Reza, D. Bekaert, S. Cole, D. Van Hertem, R. Belmans, “Wavelet-based protection strategy for DC faults in multi-terminal VSC HVDC systems” IET Gen., Trans. & Dist. 5(4) 496-503 (2011) [CrossRef] [Google Scholar]
  26. L. Tang, B.-T. Ooi, “Locating and isolating DC faults in multiterminal DC systems”, IEEE Trans Power Delivery 22(3) 1877-1884 (2007) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.