Open Access
Issue
MATEC Web Conf.
Volume 288, 2019
2019 5th Asia Conference on Mechanical Engineering and Aerospace Engineering (MEAE 2019)
Article Number 01006
Number of page(s) 6
Section Mechanical Engineering
DOI https://doi.org/10.1051/matecconf/201928801006
Published online 14 August 2019
  1. M. Cheng, G. Meng, J.P. Jing. Numerical and experimental study of a rotor-bearing-seal system. Mechanism and Machine Theory, 42, 1043–1057 (2007) [CrossRef] [Google Scholar]
  2. J. Hua, S. Swaddiwudhipong, Z.S. Liu. Numerical analysis of nonlinear rotor-seal system. Journal of Sound and Vibration, 283, 525–542 (2005) [CrossRef] [Google Scholar]
  3. A.K. Darpe. Dynamics of a Jeffcott rotor with slant crack. Journal of Sound and Vibration. 303, 1–28 (2007) [CrossRef] [Google Scholar]
  4. F. Fang. Research progress of fault diagnosis methods for rotor bar of induction motor. Chinese Journal of Ship Research, 5(5), 77–81 (2010) [Google Scholar]
  5. S. Edwards, A.W. Lees, M.I. Friswell. Experimental identification of excitation and support parameters of a flexible rotor-bearings-Foundation system from a single run-down. Journal of Sound and Vibration. 232(5), 963–992 (2000) [CrossRef] [Google Scholar]
  6. Q. Ding, J.E. Cooper, A.Y.T. Leung. Hopf bifurcation analysis of a rotor/seal system. Journal of Sound and Vibration, 252(5), 817–833 (2002) [CrossRef] [Google Scholar]
  7. J.P. Jing, G. Meng, Y. Sun. On the non-linear dynamic behavior of a rotor-bearing system. Journal of Sound and Vibration, 274, 1031–1044 (2004) [CrossRef] [Google Scholar]
  8. S.T. Li, Q.Y. Xu, X.L. Zhang. Nonlinear dynamic behaviors of a rotor-labyrinth seal system. Nonlinear Dynamic, 47, 321–329 (2007) [CrossRef] [Google Scholar]
  9. Z.G. Li, D. Kong, Y.H. Jiao. Research on nonlinear dynamic characteristics of a rotor-seal system. Journal of Vibration and Shock, 28(6), 159–163 (2009) [Google Scholar]
  10. W.Q. HE, Z.H. ZHEGN, W.F. ZHANG. Influence of system parameters on static and dynamic characteristics of labyrinth seal. Chinese Journal of Ship Research, 12(5), 126–131 (2017) [Google Scholar]
  11. A. Muszynska, D.E. Bently. Frequency-swept rotating input perturbation techniques and identification of the fluid force models in rotor/bearing/seal systems and fluid handling machines. Journal of Sound and Vibration, 143(1), 103–124 (1990) [CrossRef] [Google Scholar]
  12. F. Zeng, Z.T. Wu. Calculating stiffness of a simple rotor with a transverse. Mechanical Science and Technology, 18(5), 745–747 (1999) [Google Scholar]
  13. A.S. Sekhar, J.K. Dey. Effects of cracks on rotor system instability. Mechanism and Machine Theory. 35, 1657–1674 (2000) [CrossRef] [Google Scholar]
  14. R. Gash. A survey of the dynamic behavior of a simple rotating shaft with a transverse crack. Journal of Sound and Vibration, 162, 313–332 (1993) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.