Issue |
MATEC Web of Conferences
Volume 16, 2014
CSNDD 2014 - International Conference on Structural Nonlinear Dynamics and Diagnosis
|
|
---|---|---|
Article Number | 03006 | |
Number of page(s) | 4 | |
Section | Stability of rotating machines | |
DOI | https://doi.org/10.1051/matecconf/20141603006 | |
Published online | 01 September 2014 |
Nonlinear responses of externally excited rotor bearing system
Mechanical Engineering Department, Center for Energy, Indian Institute of Technology Jodhpur, India
A mathematical model incorporating higher order deformation in bending is developed to investigate the nonlinear behavior of rotor. Transverse harmonic base excitation is imparted to rotor system and Euler-Bernoulli beam theorem is applied with effects such as rotary inertia, gyroscopic effect, higher order large deformations, rotor mass unbalance and dynamic axial force. Discretization of the kinetic and strain (deformation) energies of the rotor system is done using the Rayleigh–Ritz method. Second order coupled nonlinear differential equations of motion are obtained using Hamilton’s principle. Nonlinear dynamic response of the rotor system is obtained by solving above equations using the method of multiple scales. This response is examined for resonant condition. It is concluded that nonlinearity due to higher order deformations and variations in the values of different parameters like mass unbalance and shaft diameter significantly affects the dynamic behavior of the rotor system. It is also observed that the external harmonic excitation greatly affects the dynamic response.
© Owned by the authors, published by EDP Sciences, 2014
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.