Open Access
MATEC Web Conf.
Volume 287, 2019
6th International BAPT Conference “Power Transmissions 2019”
Article Number 03001
Number of page(s) 5
Section Dynamics, Vibration and Noise
Published online 14 August 2019
  1. ISO 6336, Part 1, Calculation of load capacity of spur and helical gears, (2006) [Google Scholar]
  2. AGMA 927, Load Distribution Factors-Analytical Methods for Cylindrical Gears, (2000) [Google Scholar]
  3. U. Kissling, Application and Improvement of Face Load Factor Determination Based on AGMA 927, Geartechnology, pp 50-59, (2014) [Google Scholar]
  4. U. Kissling, H. Dinner: A Procedure to Determine the Optimum Flank Line Modifications for Planetary Gear Configurations. Int. Gear Conf in Lyon Villeurbanne, France, (2014) [Google Scholar]
  5. F. Litvin, A. Fuentes, I. G. Perez, L. Carnevali, K. Kawasaki, Modified Involute Helical Gears: Computerized Design, Simulation of Meshing and Stress. NASA Report, (2003) [Google Scholar]
  6. P. Velex, P., M. Maatar, A Mathematical Model for Analyzing the Influence of Shape Deviations and Mounting Errors on Gear Dynamic Behavior, J. Sound Vib., 191 (5), pp. 629-660, (1996) [CrossRef] [Google Scholar]
  7. V. Ambarisha, R. G. Parker, Nonlinear Dynamics of Planetary Gears Using Analytical and Finite Element Models, J. Sound Vib., 302 (3), pp 577-595, (2007) [CrossRef] [Google Scholar]
  8. T. Eritenel, R. G. Parker, Three-Dimensional Nonlinear Vibration of Gear Pairs, J. Sound Vibr., 331, pp 3628-3648, (2012) [Google Scholar]
  9. R. G. Parker, S. M. Vijayakar, T. Imajo, Non-Linear Dynamic Response of a Spur Gear Pair: Modelling and Experimental Comparisons, J. Sound Vibr., 237 (3), pp 435-455, (2000) [CrossRef] [Google Scholar]
  10. T. Eritenel, R. G. Parker, An Investigation of Tooth Mesh Nonlinearity and Partial Contact Loss in Gear Pairs Using a Lumped-Parameter Model, Mech. Mach. Theory, 56, pp 28-51, (2012) [CrossRef] [Google Scholar]
  11. A. Andersson, L. Vedmar, A Dynamic Model to Determine Vibrations in Involute Helical Gears, J. Sound Vib., 260 (2), pp. 195-212, (2003) [CrossRef] [Google Scholar]
  12. T. Eritenel, R. G. Parker A Static and Dynamic Model for Three-dimensional Multi-mesh Gear Systems, Proc. of ASME Power Transmission and Gearing Conf., 5b, pp 945-956, (2005) [Google Scholar]
  13. J. P. Raclot, P. Velex Simulation of the Dynamic Behaviour of Single and Multi-stage Geared Systems with Shape Deviations and Mounting Errors by Using a Spectral Method, J. Sound Vib, 220 (5), pp 861-903, (1999) [CrossRef] [Google Scholar]
  14. T. Lin, Z. He, F. Geng, Prediction and Experimental study on Structure and Radiation Noise of Subway Gearbox, J. of Vibroeng., 15 (4), pp 1838-1846, (2013) [Google Scholar]
  15. Z. Z. He, T. T. Lin, J. Song, Analytical Computational Method of Structure-borne Noise and Shock Resistance of Gear System, J. of Measurement in Eng., 2 (4), pp 215-224, (2014) [Google Scholar]
  16. Z. Wang, T. Lin, Z. He, X. Yang. Vibration Characteristics Analysis of Vertical Mill Reducer. In. Conf. on Automation, Mechanical Control and Computational Engineering, AMCCE, (2015) [Google Scholar]
  17. C. Korka, C. O. Miclosina, Shape Improvement of a Gearbox Housing Using Modal Analysis, RJAV, 15 (1), (2018) [Google Scholar]
  18. D. S. Chavan, A. K. Mahale, A.G. Thakur, Modal Analysis of Power Take Off Gearbox, Int. J. of Em. Techn. and Adv. Eng., 3 (1), pp 70-76, (2013) [Google Scholar]
  19. R.V. Nigade, T.A. Jadhav, A.M. Bhide, Vibration Analysis of Gearbox Top Cover, Int. J. of Inn. in Eng. and Tech., 1 (4), pp 26-33, (2012) [CrossRef] [Google Scholar]
  20. P. Sondkar, A. A. Kahraman, A Dynamic Model of a Double-helical Planetary Gear Set, Mech. and Mach. Theory, 70, pp 157-174, (2013) [CrossRef] [Google Scholar]
  21. R. P. Tanna, T.C. Lim, Modal Frequency Deviations in Stimating Ring Gear Modes Using Smooth Ring Solutions, J. of Sound and Vib., 269, pp 1099-1110, (2004) [CrossRef] [Google Scholar]
  22. D. R. Kiracofe, R. G. Parker, Structured Vibration Modes of General Compound Planetary Gear Systems, J. of Vib. and Acous., 129, pp 1-16, (2007) [CrossRef] [Google Scholar]
  23. Y. Guo, R.G. Parker, Purely Rotational Model and Vibration Modes of Compound Planetary Gears, Mech. and Mach. Theory, 45, pp 365-377, (2010) [CrossRef] [Google Scholar]
  24. A. Kahraman, S.M. Vijayakar, Effect of Internal Gear Flexibility on the Quasi-static Behavior of a Planetary Gear Set, J. of Mech. Design, 123, pp 408-415, (2001) [CrossRef] [Google Scholar]
  25. T. M. Ericson, R.G. Parker, Planetary Gear Modal Vibration Experiments and Correlation against Lumped-parameter and Finite Element Models, J. of Sound and Vib., 332, pp 2350-2375, (2013) [CrossRef] [Google Scholar]
  26. N. Feki, M. Karray, M. T. Khabou, F. Chaari & M. Haddar, Frequency Analysis of a Two-stage Planetary Gearbox Using Two Different Methodologies. Comptes Rendus-Mecanique, 345 (12), pp 832-843, (2017). [CrossRef] [Google Scholar]
  27. V. Dobrev, S. Stoyanov, A. Dobreva, Numerical Investigation of Planetary Gear Trains and Transmissions. Mech. and Machine Science/ 5th Int. Conf. on Power Transmission BAPT in Ohrid, 1, CIRKO dooel Skopje, pp. 155-162, (2016) [Google Scholar]
  28. S. Stoyanov, V. Dobrev, A. Dobreva. Investigating Dynamic Behavior of Planetary Gear Trains through the Systematic Approach, VDI Berichte, 2, pp. 127-132, (2017) [Google Scholar]
  29. S. Stoyanov, S., V. Dobrev, A. Dobreva. Finite Element Contact Modelling of Planetary Gear Trains, Mat. Science and Eng., 252, pp 012034-38, (2017) [Google Scholar]
  30. A. Dobreva, S. Stoyanov, Optimization Research of Gear Trains with Internal Meshing, University Publishing Centre, Ruse, (2012) [Google Scholar]
  31. V. Dobrev, S. Stoyanov, A. Dobreva, Design, Simulation and Modal Dynamics of Gears and Transmissions, VDI-Bericht, 2255, (3), pp 695-707, (2015) [Google Scholar]
  32. S. Stoyanov, Explicit Dynamics of Gear Pair Using Finite Element Model, Scient. Proc. of UoR, 54, pp 67-71, (2015) [Google Scholar]
  33. S. Stoyanov, S., A. Dobreva, Development, Design and Optimization of Planetary Gear Trains for Vehicles-Computer Aided Frequency Analysis of Planetary Gears, VDI-Berichte, 2108.2, pp 1423-1426, (2010): [Google Scholar]
  34. A. Dobreva, V. Dobrev, Research of Technical Parameters of Transmissions for Vehicles and Agricultural Machines.// UPB: Scientific Bulletin, Series D: Mechanical Engineering, 69, pp 103-109, (2007) [Google Scholar]
  35. A. Dobreva, Theoretical Investigation of the Energy Efficiency of Planetary Gear Trains, Springer Verlag Dordreeht, pp 289-298, (2013) [Google Scholar]
  36. A. Dobreva, V. Dobrev, Innovative Methodology for Decreasing Mechanical Losses in Vehicles, Proc. of the 4th International Cong. of Aut. and Trans. Eng., Springer Verlag, pp 234-242, (2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.